›› 2013, Vol. 34 ›› Issue (10): 2801-2809.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Application of equivalent rock mass technique to mesoscopic analysis of fracture mechanism of rock specimen containing two intermittent joint

ZHOU Yu1, WU Shun-chuan1, WANG Li1, YAN Qiong1, ZHAO Wei1, ZHANG Xiao-ping2   

  1. 1. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China; 2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2013-03-31 Online:2013-10-09 Published:2013-10-18

Abstract: By using equivalent rock mass (ERM) technique, the rock block and joint are represented by bonded particle model and smooth joint model, respectively. Then, the rock specimen containing two artificial intermittent joints is constructed, and its mechanical characteristics and fracture mechanism are investigated from mesoscopic viewpoint. Meanwhile, combining with lab test result, the suitability and reliability of ERM technique used in the mechanical characteristics research of jointed rock mass are validated by comparative analysis between calculative and experimental data. The main research results are as follows: (1) With the occurrence change of intermittent joint, the macro fractures of specimen can be divided into shear mode, wing tensile mode and mixed mode. However, the tensile micro crack between particles is the main inducement that causes various macro fracture mode. (2) Before the peak compressive strength of specimen, the acoustic emission (AE) events of fracture mainly generate near the tip of intermittent joint and accumulate along the link line between the tips of the two intermittent joints in rock bridge area. In this stage, the number of AE events is less and the fracture magnitude is lower. (3) After the peak compressive strength of specimen, the number of AE events increases rapidly and the fracture magnitude enhances. (4) In different specimens, all the relationships between cumulative number of AE events and fracture magnitude approximately meet Doseresp growth function.

Key words: equivalent rock mass technique, intermittent joint, rock mass, fracture mechanism, meso

CLC Number: 

  • TU 452
[1] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[2] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[3] LU Hai-feng, MENG Xiang-shuai, YAN Wei, YAO Duo-xi, . Circular sliding solution of mining stability and failure depth of floor layered structure on coal face [J]. Rock and Soil Mechanics, 2020, 41(1): 166-174.
[4] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[5] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[6] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[7] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[8] DING Zhen-jie, ZHENG Jun, LÜ Qing, DENG Jian-hui, TONG Meng-sheng, . Discussion on calculation methods of quality index of slope engineering rock mass in Standard for engineering classification of rock mass [J]. Rock and Soil Mechanics, 2019, 40(S1): 275-280.
[9] CUI Xue-jie, YAN E-chuan, CHEN Wu. Cluster analysis of discontinuity occurrence of rock mass based on improved genetic algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 374-380.
[10] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[11] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[12] HOU Hui-ming, HU Da-wei, ZHOU Hui, LU Jing-jing, LÜ Tao, ZHANG Fan, . Thermo-hydro-mechanical coupling simulation method of surrounding rock in high-level radioactive waste repository considering effective meso-thermal parameters [J]. Rock and Soil Mechanics, 2019, 40(9): 3625-3634.
[13] CHEN Qing-fa, YIN Ting-chang, GAO Yuan, . Three-dimensional demarcation method of homogeneous structural domains of jointed rock masses at underground mine [J]. Rock and Soil Mechanics, 2019, 40(8): 3181-3188.
[14] ZHANG Chuan-qing, LIU Zhen-jiang, ZHANG Chun-sheng, ZHOU Hui, GAO Yang, HOU Jing, . Experimental study on rupture evolution and failure characteristics of aphanitic basalt [J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496.
[15] JIANG Hai-ming, LI Jie, WANG Ming-yang, . Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass [J]. Rock and Soil Mechanics, 2019, 40(4): 1405-1412.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[10] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .