›› 2006, Vol. 27 ›› Issue (5): 811-815.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of difference GPS to monitor land subsidence

HOU Lin-shan1, WANG Jin-long2, ZHU San-mei3, ZHANG Sheng1, ZHONG Shi-ming1   

  1. 1.Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China; 2.Institue of Rock and Soll Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3.Wuhan Railway Vocational Technological College, Wuhan 430063, China
  • Received:2005-10-21 Online:2006-05-10 Published:2013-11-05

Abstract: For the purpose of using GPS to monitor land subsidence for engineering technician, the theory of relative position by static difference global positioning system was described in detail. The method of monitoring large-scale land subsidence by difference global positioning system and the cause of bringing influence on the position accuracy of DGPS were introduced. The result indicated that the application of difference GPS to measure large-scale land subsidence has become an efficiently and accurately measuring method.

Key words: land subsidence, GPS, difference

CLC Number: 

  • P 228
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[2] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[3] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[4] JIN Dan-dan, WANG Su, LI Chuan-xun. Analysis of consolidation of natural heterogeneous soils with a threshold hydraulic gradient [J]. Rock and Soil Mechanics, 2019, 40(4): 1433-1440.
[5] GUO Chao, GAO Yong-tao, WU Shun-chuan, CHENG Zi-qiao, ZHANG Shi-huai, HAN Long-qiang, . Research of micro-seismic source location method in layered velocity medium based on 3D fast sweeping algorithm and arrival time differences database technique [J]. Rock and Soil Mechanics, 2019, 40(3): 1229-1238.
[6] LIU Yong, FENG Shuai, QIN Zhi-meng. Similarity evaluation method of landslide monitoring points based on motion-angle-difference [J]. Rock and Soil Mechanics, 2019, 40(1): 288-296.
[7] LIU Cheng-yu, ZHANG Zhi-xiang,. Improved calculation method of foundation pit enclosure structure based on p-y curve [J]. , 2018, 39(S1): 446-452.
[8] LI Chuan-xun, DONG Xing-quan, JIN Dan-dan, WANG Yu-lin,. Large-strain nonlinear consolidation of double-layered soft clay with threshold gradient [J]. , 2018, 39(5): 1877-1884.
[9] LUO Yue, YE Shu-jun, WU Ji-chun,. Numerical model for simulating 3D regional land subsidence [J]. , 2018, 39(3): 1063-1070.
[10] ZHOU Yun-dong, WANG Yong, LI Bing, XU Jia-hui, LIU Meng-cheng, ALI H Mahfouz, . Study of the preparation of air-foam treated lightweight soil samples [J]. Rock and Soil Mechanics, 2018, 39(12): 4413-4420.
[11] YANG Jian-min, HUO Wang-wen,. Linear s-lnr relation of land subsidence induced by group wells pumping distributed as line and area [J]. , 2018, 39(10): 3565-3572.
[12] YANG Ji-long, YUAN Hai-fan, HU Yun-zhuang, XU Qin-mian, SHI Pei-xin, CHEN Yong-sheng, . Relationship between elastoplastic deformation of deep clay and land subsidence in Tianjin coastal area [J]. , 2018, 39(10): 3763-3772.
[13] LI Chuan-xun , DONG Xing-quan , JIN Dan-dan , XIE Kang-he,. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient [J]. , 2017, 38(2): 377-384.
[14] CUI Qiang, ZHOU Ya-hui, TONG Rui-ming, JI Ye. Difference analysis of uplift resistance characteristics between spread footing and foundation soil [J]. , 2016, 37(S2): 476-482.
[15] JIANG Huan , WANG Shui-lin , WANG Wan-jun,. A numerical method for analyzing problems of a spherical cavity in strain-softening rock mass [J]. , 2016, 37(S2): 697-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wei,LI Xing-zhao. Analysis method of rigid piled raft foundation under vertical loading[J]. , 2009, 30(11): 3441 -3446 .
[2] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
[3] WANG Ming-nian, LU Jun-fu, LIU Da-gang, ZHANG Jian-guo. Study of absolute deformation control criterion and its application for large section subsea tunnel with “CRD” method[J]. , 2010, 31(10): 3354 -3360 .
[4] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[5] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[6] ZHENG Hao,LIU Han-long,LEI Yu-hua,REN Lian-wei. Large-scale model test analysis of behaviors of jet grouting (JG) soil-cement-pile strengthened pile under lateral load[J]. , 2011, 32(1): 217 -223 .
[7] YUAN Da-jun,DING Zhou-xiang,ZHU He-hua. Analysis of consolidation coefficients in classic small-strain consolidation theory[J]. , 2009, 30(6): 1649 -1652 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .