›› 2006, Vol. 27 ›› Issue (6): 895-898.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on effect of sliding stability of No.3 dam foundation of left powerhouse of Three Gorges Project due to No.4 dam foundation combined action using finite element method

REN Jian-xi1, LI Chun-guang2, GE Xiu-run2   

  1. 1.School of Architecture and Civil Engineering,Xi’an University of Science and Technology, Xi’an 710054,China 2. Key Laboratory of Rock and Soil Mechanics, Institute of Rock and Soil Mechanincs, CAS, Wuhan 430071, China
  • Received:2004-09-27 Online:2006-06-10 Published:2013-11-14

Abstract: 3D-FEM computation model included 41 items large structural planes and 5 items faults in the real attitude and distribution in the No.3 dam foundation and No.4 dam foundation of left powerhouse of the Three Gorges Project combined action are created. The safety factor of No.3 dam foundation in deep sliding stability due to No.4 dam foundation combined action is studied. A new practical judge method of dam foundation stability safe factor based on 3D-FEM simulation results using strength reduction method is proposed; it has definite physics meaning. It shows that the combining action of No.4 dam foundation can increase the safety factor of No.3 dam foundation; but its effect is small.

Key words: real attitude, 3D elastoplastic FEM, deep sliding stability, combining action, safety factor

CLC Number: 

  • TU 457
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[2] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[3] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
[4] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
[5] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
[6] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[7] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
[8] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
[9] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
[10] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[11] WANG Zhen, YE Xiao-ming, LIU Yong-xin,. Improved Janbu slices method considering progressive destruction in landslide [J]. , 2018, 39(2): 675-682.
[12] YIN Guang-zhi, WANG Wen-song, WEI Zuo-an, CAO Guan-sen,ZHANG Qian-gui, JING Xiao-fei,. Analysis of the permanent deformation and stability of high tailings dam under earthquake action [J]. , 2018, 39(10): 3717-3726.
[13] CHEN Zu-yu, LI Kang-ping, LI Xu, ZHAN Cheng-ming,. A preliminary study of allowable factor of safety in gravity retaining wall stability analysis [J]. , 2018, 39(1): 1-10.
[14] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
[15] GONG Wen-hui, CHEN Xun-long, QIU Jin-wei, WANG Jia, ZHONG Xu-han. Seismic stability analysis of soil slope using theory of slip line field [J]. , 2017, 38(6): 1733-1738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Hong-bao, YIN Guang-zhi, LI Xiao-shuang. Experimental study of characteristics of tensile burned gritstone[J]. , 2010, 31(4): 1143 -1146 .
[2] HE Si-ming, WU Yong, LI Xin-po. Research on mechanism of uplift rock-socketed piles[J]. , 2009, 30(2): 333 -337 .
[3] KUANG Yu-chun, WU Kai-song, YANG Ying-xin, MA De-kun. Simulation model of drilling process of three-cone bit[J]. , 2009, 30(S1): 235 -238 .
[4] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[5] YAN Zhi-hua, LIU Zhi-wei, LIU Hou-jian. Treatment and parameter selection of high slope of a power plant located in the terraces of Yellow River[J]. , 2009, 30(S2): 465 -468 .
[6] XU Zhen-hao , LI Shu-cai , LI Li-ping , HOU Jian-gang , SUI Bin , SHI Shao-shuai. Risk assessment of water or mud inrush of karst tunnels based on analytic hierarchy process[J]. , 2011, 32(6): 1757 -1766 .
[7] JIANG Quan ,FENG Xia-ting ,ZHOU Hui ,ZHAO Yang , XU Ding-ping ,HUANG Ke ,JIANG Ya-li. Discussion of strength value for interlayer shear belt[J]. , 2011, 32(11): 3379 -3386 .
[8] WEN Shi-qing , LIU Han-long , CHEN Yu-min. Analysis of load transfer characteristics of single grouted gravel pile[J]. , 2011, 32(12): 3637 -3641 .
[9] LI Shun-qun ,GAO Ling-xia ,CHAI Shou-xi. Significance and interaction of factors on mechanical properties of frozen soil[J]. , 2012, 33(4): 1173 -1177 .
[10] MENG Zhen, CHEN Jin-jian, WANG Jian-hua, YIN Zhen-yu. Study of model test on bearing capacity of screw piles in sand[J]. , 2012, 33(S1): 141 -145 .