›› 2006, Vol. 27 ›› Issue (6): 945-949.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Investigation on creep damage of natural gas storage in salt rock layer

CHEN Feng, YANG Chun-he, BAI Shi-wei   

  1. 1. Key Laboratory of Rock and Soil Mechanics, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. China University of Mining and technology, Beijing 100083, China
  • Received:2005-09-29 Online:2006-06-10 Published:2013-11-14

Abstract: Based on the mechanical test and the Norton Power law of salt rock, a new constitutive law of salt rock is presented. The new constitutive law can embody the steady creep and the accelerative creep of salt rock by importing the damage variable. The damage equivalent stress is the function of confining pressure and deviatoric stress in the new constitutive law. The parameters of the constitutive law were obtained by simulating the experimental data of salt rock in some salt mine. The theoretic results accord with the experimental results. By the three-dimension numerical method, the new constitutive law is programmed. The natural gas storage in the salt mine is analyzed by the new constitutive law. The evolvement law of damage bound and the displacement law around the natural gas storage is studied under the minimal natural gas storage pressure. The continuous operating time of the natural gas storage is also analyzed under the pressure. The study indicates that: (1) The presented constitutive law has good numerical stability during the accelerative creep. (2) The extension of the damage bound around the storage is very fast after the salt rock around the storage enter the accelerative creep phase under the minimal operating pressure. The most dangerous position of the storage is the top. (3) The steady volume convergence becomes steady and the damage creep volume convergence develops very fast after the salt rock around the storage enter the accelerative creep phase. (4) The continuous operating time of storage can’t exceed three months under the minimal pressure.

Key words: salt rock, gas storage, creep, damage

CLC Number: 

  • TU 45
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[2] WANG Jie, SONG Wei-dong, TAN Yu-ye, FU Jian-xin, CAO Shuai, . Damage constitutive model and strength criterion of horizontal stratified cemented backfill [J]. Rock and Soil Mechanics, 2019, 40(5): 1731-1739.
[3] CAO Meng, YE Jian-hong, . Creep-stress-time four parameters mathematical model of calcareous sand in South China Sea [J]. Rock and Soil Mechanics, 2019, 40(5): 1771-1777.
[4] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[5] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[6] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[7] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[8] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[9] GAO Feng, XIONG Xin, ZHOU Ke-ping, LI Jie-lin, SHI Wen-chao, . Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932.
[10] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[11] LI Cheng-wu, FU Shuai, XIE Bei-jing, LI Guang-yao, WAN Tian-yu. Characteristics and generation mechanism of low-frequency magnetic field generated during the damage of coal under static load [J]. Rock and Soil Mechanics, 2019, 40(2): 481-488.
[12] KANG Yan-fei, CHEN Jie, JIANG De-yi, LIU Wei, FAN Jin-yang, WU Fei, JIANG Chang-qi, . Damage self-healing property of salt rock after brine immersion under different temperatures [J]. Rock and Soil Mechanics, 2019, 40(2): 601-609.
[13] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[14] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[15] KANG Yan-fei, CHEN Jie, JIANG De-yi, LIU Wei, FAN Jin-yang. Summary on damage self-healing property of rock salt [J]. Rock and Soil Mechanics, 2019, 40(1): 55-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!