›› 2006, Vol. 27 ›› Issue (8): 1293-1298.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic behaviors of subway structure subjected to strong earthquake motions using shaking table tests and dynamic analyses

CHE Ai-lan1, IWATATE Takahiro2, GE Xiu-run1   

  1. 1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200030, China; 2. Civil and Environmental Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
  • Received:2005-05-20 Online:2006-08-10 Published:2013-11-26

Abstract: In order to clarify the dynamic behaviors and the damage mechanism of the subway structure, a series of shaking table tests and dynamic finite element analyses of Dakai subway station damaged in 1995 Hyogoken-nanbu earthquake were performed. The mechanism of the seismic soil pressure acting on the structure, the effects of the input directions of the sinusoidal and random waves, the embedded depth of the subway structure and the shear modulus ratio between the structure and the surrounding ground were investigated. Moreover, from the nonlinear seismic response analysis,the seismic soil pressure in the limit state of the surrounding ground were evaluated. It was resulted that the seismic soil pressure would reach a peak value; and the seismic soil pressure consists of dynamic component and static one caused by residual strain of the ground due to strong earthquake motions. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure.

Key words: Hanshin-Awaji earthquake, shaking table test, dynamic finite element analysis, seismic soil pressure, seismic response

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] HAN Jun-yan, HOU Ben-wei, ZHONG Zi-lan, ZHAO Mi, LI Li-yun, DU Xiu-li. Research on shaking table test scheme of buried pipeline under multi-point non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(6): 2127-2139.
[2] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[3] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[4] ZHUANG Hai-yang, FU Ji-sai, CHEN Su, CHEN Guo-xing, WANG Xue-jian, . Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test [J]. Rock and Soil Mechanics, 2019, 40(4): 1263-1272.
[5] LIU Han-xiang, XU Qiang, ZHU Xing, ZHOU Xiao-peng, LIU Wen-de. Marginal spectrum characteristics of the rock slope with a soft interlayer during an earthquake [J]. Rock and Soil Mechanics, 2019, 40(4): 1387-1396.
[6] SUN Guang-chen, XIE Jia-you, HE Shan, FU He-lin, JIANG Xue-liang, ZHENG Liang, . Dynamic responses of bridge-tunnel approaching parts under different seismic excitation directions in soft surrounding rock [J]. Rock and Soil Mechanics, 2019, 40(3): 893-902.
[7] XU Peng, JIANG Guan-lu, QIU Jun-jie, GAO Ze-fei, WANG Zhi-meng, . Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[8] XIONG Zhong-ming, ZHANG Chao, CHEN Xuan. Model test on ground motion parameters of site with fissures under seismic loading [J]. Rock and Soil Mechanics, 2019, 40(2): 421-428.
[9] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[10] XU Cheng-shun, DOU Peng-fei, GAO Liu-cheng, CHEN Su, DU Xiu-li, . Shaking table test on effects of ground motion duration compression ratio on seismic response of liquefied foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 147-155.
[11] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
[12] ZHANG Ze-lin, WU Shu-ren, WANG Tao, TANG Hui-ming, LIANG Chang-yu, . Influence of seismic wave amplitude on dynamic response of loess-mudstone slope [J]. Rock and Soil Mechanics, 2018, 39(7): 2403-2412.
[13] CAI Qi-peng, CHARLES W W Ng , HU Ping, CHEN Xing-xin, LI Sheng-cai,. Centrifuge experimental study of of dynamic responses of clay stratum overlying a strike-slip fault [J]. , 2018, 39(7): 2424-2432.
[14] HAN Bing, LIANG Jian-wen, ZHU Jun,. Effect of lenticle on seismic response of structures in deep water-saturated poroelastic soft site [J]. , 2018, 39(6): 2227-2236.
[15] YAO Yu, WANG Rui, LIU Tian-yun, ZHANG Jian-min,. Seismic response of high concrete face rockfill dams subject to non-uniform input motion [J]. , 2018, 39(6): 2259-2266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] . Numerical implementation of discontinuities in dual media 3D model for thermo-hydro-mechanical coupling[J]. , 2010, 31(2): 638 -644 .
[3] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[4] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[5] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[6] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[7] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .