›› 2005, Vol. 26 ›› Issue (3): 494-499.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Recent development of strain localization of softening geo-materials

ZHAO Bing1, 2, LI Ning1, 3, SHENG Guo-gang 2   

  1. 1. Research Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China; 2. College of Bridge and Structure Engineering, Changsha University of Science and Technology, Changsha 410076, China; 3.Cold and Arid Regions Environmental and Engineering Institute, CAS, Lanzhou 730000,China
  • Received:2004-03-02 Online:2005-03-10 Published:2013-11-21

Abstract: It is difficult to describe the strain softening of geo-materials. In order to analyze softening mechanism of geo-materials in essence, it is necessary to combine the researches of softening mechanism with the researches of strain localization evolvement. The developments of strain localization researches in geotechnical mechanics, such as experimental researches, theoretical modeling and numerical simulations, have been reviewed. When strain localization happened, the necessity to consider the strain-gradient was illuminated. Some primary ideas about the trends of strain localization researches in geotechnical mechanics were put forward.

Key words: softening, geo-materials, strain localization, strain-gradient, trends

CLC Number: 

  • TU 470
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[2] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[3] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[4] WANG Teng, WU Rui. Study of vertical penetration resistance of seabed pipelines in cohesive soil [J]. Rock and Soil Mechanics, 2019, 40(3): 871-878.
[5] LU Yong, ZHOU Guo-qing , YANG Dong-ying, SONG Jia-qing, . Explicit calculation of sand unified model combining shear dilatancy softening and shear shrinkage hardening [J]. Rock and Soil Mechanics, 2019, 40(3): 978-986.
[6] WANG Jie, GONG Jing-wei, ZHAO Ze-yin. Position, direction of strain localization of rock-like specimens under uniaxial compression and its application to early-warning [J]. Rock and Soil Mechanics, 2018, 39(S2): 186-194.
[7] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
[8] GAO Qiang, ZHANG Qiang-yong, ZHANG Xu-tao, XIANG Wen,. Zonal disintegration mechanism analysis based on strain gradient of deep surrounding rock mass under dynamic unloading effect [J]. , 2018, 39(9): 3181-3194.
[9] WANG Feng-yun, QIAN De-ling. Elasto-plastic analysis of a deep circular tunnel based on tangential strain softening [J]. , 2018, 39(9): 3313-3320.
[10] CHEN Zi-quan, HE Chuan, DONG Wei-jie, MA Gao-yu, PAN Xu-yong, PEI Cheng-yuan,. Physico-mechanical properties and its energy damage evolution mechanism of the Jurassic and Cretaceous argillaceous sandstone in Northern Xinjiang [J]. , 2018, 39(8): 2873-2885.
[11] WANG Peng, XU Jin-yu, FANG Xin-yu, WANG Pei-xi, LIU Shao-he, WANG Hao-yu,. Water softening and freeze-thaw cycling induced decay of red-sandstone [J]. , 2018, 39(6): 2065-2072.
[12] SUN Kai, CHEN Zheng-lin, LU De-chun,. An elastoplastic constitutive model incorporating cementation effect of stabilizer-treated soil [J]. , 2018, 39(5): 1589-1597.
[13] REN Song, LI Zhen-yuan, DENG Gao-ling, LIU Wei, PU Wen-ming,. Softening characteristic of gypsum rock under the action of multi-factors [J]. , 2018, 39(3): 789-796.
[14] WANG Zhen, YE Xiao-ming, LIU Yong-xin,. Improved Janbu slices method considering progressive destruction in landslide [J]. , 2018, 39(2): 675-682.
[15] DENG Qin, TANG Hua, WANG Dong-ying, QIN Yu-qiao, WU Zhen-jun,. Bench-shape slope stability analysis based on strain softening model [J]. , 2018, 39(11): 4109-4116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] HUANG Qiang-bing,PENG Jian-bing,DENG Ya-hong,FAN Wen. Design parameters of Xi’an metro line 2 tunnel passing through active ground fissure zones[J]. , 2010, 31(9): 2882 -2888 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[5] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[6] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[7] ZHAO Ming-hua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. , 2012, 33(2): 524 -530 .
[8] XIA Li-nong , MIAO Yun-dong , TAN Tie-qiang. Three-dimensional finite element analysis of negative skin friction behaviors in pile groups with cap[J]. , 2012, 33(3): 887 -891 .
[9] DONG Zhi-liang, ZHOU Qi, ZHANG Gong-xin, QIU Qing-chang, LUO Yan, LI Yan. Field comparison test of reinforcement technology of shallow ultra-soft soil in Tianjin Binhai New Area[J]. , 2012, 33(5): 1306 -1312 .
[10] WANG Yu ,JIA Zhi-gang ,LI Xiao ,WANG Can ,YU Hong-ming . Fuzzy random reliability analysis of slope based on fuzzy point estimate method[J]. , 2012, 33(6): 1795 -1800 .