›› 2005, Vol. 26 ›› Issue (4): 577-579.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on anti-sliding effect of the scattered row piles in soil nailing wall pit-protection

JIN Gang-feng1, TU Yu-min1, RUAN Chang-qing 2   

  1. 1. Department of Civil Engineering, Zhejiang University , Hangzhou 310027, China; 2. Headquarters of Wenzhou Urban Center Area Construction, Wenzhou 325003,China
  • Received:2004-04-13 Online:2005-04-09 Published:2013-12-19

Abstract: The most dangerous arc sliding face of the soil nailing wall is usually much deeply in soft clay foundation pit protection, while excavation depth is comparatively deep. It is very difficult to satisfy the engineering design. The scattered row piles will be adopted to satisfy its whole stability. This text analyzes the earth pressure acting on the scattered row piles with soil plasticity and soil arch effect principle. The anti-sliding effect of the scattered row pile in soil nailing wall excavation protection is studied with a principle of pile-soil interaction. It is verified by the actual engineering in deep excavation protection.

Key words: deep excavation, soil nailing wall, soil arch effect, scattered row piles, anti-sliding effect

CLC Number: 

  • TU 473.2
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GU Dan-ping, LING Tong-hua, . Analysis of bearing ratio of cement soil and displacement at the top of wall for soil mixing wall construction method of cantilever type [J]. Rock and Soil Mechanics, 2019, 40(5): 1957-1965.
[2] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[3] WU Chang-jiang, SUN Zhao-hua, LAI Yun-jin, BAO Hua, . Study of deformation characteristics of diaphragm wall induced by deep large excavation in soft soil region [J]. Rock and Soil Mechanics, 2018, 39(S2): 245-253.
[4] ZHOU Yong, ZHU Ya-wei,. Interaction between pile-anchor supporting structure and soil in deep excavation [J]. , 2018, 39(9): 3246-3252.
[5] HU Zhi-feng, CHEN Jian, QIU Yue-feng, LI Jian-bin, ZHOU Xing-tao, . Analytical formula for ground settlement induced by horizontal movement of retaining wall [J]. , 2018, 39(11): 4165-4175.
[6] JIA Jin-qing, GAO Jun-cheng, TU Bing-xiong , ZHANG Lei, WANG Hai-tao, GAO Ren-zhe,. Centrifugal model test of flexible retaining structures with pressured prestressed anchor in deep excavation [J]. , 2017, 38(S2): 304-310.
[7] ZHOU Yong, WANG Zheng-zhen, . Improvement of internal stability analysis method of soil nailing wall [J]. , 2016, 37(S2): 356-362.
[8] ZONG Xiang. Study of longitudinal deformation of existing tunnel due to above excavation unloading [J]. , 2016, 37(S2): 571-577.
[9] JIN Lin, HU Xin-li, TAN Fu-lin, HE Chun-can, ZHANG Han, ZHANG Yu-ming. Model test of soil arching effect of anti-slide piles based on infrared thermal imaging technology [J]. , 2016, 37(8): 2332-2340.
[10] WANG Jian-hua,LI Jiang-teng,LIAO Jun, . Several issues on the soil nailing wall combined with row piles in bracing the deep foundation pits of open cut tunnel [J]. , 2016, 37(4): 1109-1117.
[11] LI Lian-xiang , WANG Chun-hua , ZHOU Ting-ting , HU Xue-bo , ZHANG Shu-long , . Impact of position of micro pile on mechanical behaviors of composite soil nailing wall curtain [J]. , 2015, 36(S1): 501-505.
[12] CUI Qing-long , SHEN Shui-long , WU Huai-na , XU Ye-shuang , . Field investigation of deep excavation of metro station on surrounding ground in karst region of Guangzhou [J]. , 2015, 36(S1): 553-557.
[13] GOU Yao-bo, YU Feng, YANG Yu. Locating neutral point of excavation-induced skin friction on existing piles [J]. , 2015, 36(9): 2681-2687.
[14] LIN Gang ,KONG Ling-gang ,ZHAN Liang-tong ,CHEN Yun-min , . An analytical model for loosening earth pressure considering matric suction based on Terzaghi soil arch effect [J]. , 2015, 36(7): 2095-2104.
[15] QIN Hui-lai ,ZHOU Tong-he ,GUO Yuan-cheng ,DU Chao,. Study of basal bearing capacity for soil nailing walls [J]. , 2014, 35(S2): 393-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] WANG Fei,WANG Yuan,NI Xiao-dong. Analysis of random characteristics of seepage field by stochastic finite element method[J]. , 2009, 30(11): 3539 -3542 .
[3] YANG Qiang, LIU Yao-ru, LENG Kuang-dai, Lü Qing-chao, YANG Chun-he. Stability and chain destruction analysis of underground energy storage cluster based on deformation reinforcement theory[J]. , 2009, 30(12): 3553 -3561 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] LIU Jie, HE Jie, MIN Chang-qing. Contrast research of bearing behavior for composite foundation with tapered piles and cylindrical piles[J]. , 2010, 31(7): 2202 -2206 .
[6] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[7] WANG Guan-shi,LI Chang-hong,HU Shi-li,FENG Chun,LI Shi-hai. A study of time-and spatial-attenuation of stress wave amplitude in rock mass[J]. , 2010, 31(11): 3487 -3492 .
[8] LIU Wen-bai,ZHOU Jian. Experimental research on interface friction of geogrids and soil[J]. , 2009, 30(4): 965 -970 .
[9] XIONG Wei, ZHOU Zeng-hui, YU Kai-biao, WU Ya-ping, LUO Wei. Concrete ultrasonic tomography imaging and improvement based on curved path[J]. , 2011, 32(2): 629 -634 .
[10] XU Jiang, TANG Xiao-jun, LI Shu-chun, YANG Hong-wei, TAO Yun-qi. Experimental research on acoustic emission rules of rock under cyclic loading[J]. , 2009, 30(5): 1241 -1246 .