›› 2002, Vol. 23 ›› Issue (6): 683-686.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Deformation analysis of middle pier in Three Gorges permanent shiplock

WANG Tao1, ZHOU En-hua2, ZHU Huan-chun1, ZHAO Hai-bin3 , KE Qing-qing4, WANG Ying1   

  1. 1. School of Water Resources and Hydropower, Wuhan University, Wuhan 430072 , China; 2.School of Civil and Architectaral Engineering, Wuhan University, Wuhan 430072 , China; 3.Mid-South Design & Research Institute for Hydroelectric Projects,Changsha 410014, China; 4.Water Conservancy Bureau of Meizhouwan, Putian 351146, China
  • Received:2001-10-25 Online:2002-12-10 Published:2016-09-04

Abstract: The deformation monitoring data of the middle pier of the Three Gorges permanent shiplock reveals several interesting deformation phenomena. Conclusions and explanations are made concerning the phenomena, based on the finite element analysis and engineering geologic analysis. First, the fluctuation of the horizontal transformations can be attributed to the alternate excavation of the two neighboring shiplock rooms. In addition, the main reasons for the one-side-leaning phenomena in some places are the natural stress, which is not evenly distributed, and the presence of discontinuities. Lastly, the rockmass discontinuities result in the displacement breaks. A valuable reference for studying the ‘individual phenomena’ in geotechnical engineering is provided.

Key words: Three Gorges Project, slope, monitoring, displacement, ANSYS

CLC Number: 

  • TU 454
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[2] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
[3] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
[4] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[5] ZHANG Kui, ZHAO Cheng-gang, LI Wei-hua. Study of the seismic response of the seafloor ground containing soft soil [J]. Rock and Soil Mechanics, 2019, 40(6): 2456-2468.
[6] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
[7] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[8] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[9] LIU Han-xiang, XU Qiang, ZHU Xing, ZHOU Xiao-peng, LIU Wen-de. Marginal spectrum characteristics of the rock slope with a soft interlayer during an earthquake [J]. Rock and Soil Mechanics, 2019, 40(4): 1387-1396.
[10] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[11] XU Peng , JIANG Guan-lu , WANG Xun, HUANG Hao-wei , HUANG Zhe, WANG Zhi-meng, . Centrifuge model tests on influence of facing on reinforced soil retaining walls [J]. Rock and Soil Mechanics, 2019, 40(4): 1427-1432.
[12] LU Hua-xi, XU Lu-yao, LIANG Ping-ying, WU Bi-tao. Influence of hill on railway environmental vibration [J]. Rock and Soil Mechanics, 2019, 40(4): 1561-1568.
[13] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[14] ZHANG Jing-ke, SHAN Ting-ting, WANG Yu-chao, WANG Nan, FAN Meng, ZHAO Lin-yi, . Mechanical properties of soil-grout interface of anchor system in earthen sites [J]. Rock and Soil Mechanics, 2019, 40(3): 903-912.
[15] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Jin-wen,ZHAO Yang-sheng,WAN Zhi-jun,DONG Fu-ke,FENG Zi-jun,LI Yi. Experimental study of acoustic emission characteristics of granite thermal cracking under middle-high temperature and triaxial stress[J]. , 2009, 30(11): 3331 -3336 .
[2] CHEN Shan-xiong,FENG Mei-guo,XU Xi-chang,CHEN Shou-yi. Study of instability process and failure mechanism of ash storage dam in a power plant[J]. , 2009, 30(11): 3365 -3371 .
[3] WANG Gui-yao,LI Bing,FU Hong-yuan. Experimental study of moisture migration of unsaturated soil in embankment[J]. , 2010, 31(1): 61 -65 .
[4] ZHUANG Li, ZHOU Shun-hua. Static loading-unloading test of sand and stress release model[J]. , 2009, 30(9): 2667 -2673 .
[5] YIN Xiao-tao, WANG Shui-lin, MA Shuang-ke, LIU Zhi-wen. Study of stability and accumulation mechanism of colluvium affected by change of strength property[J]. , 2010, 31(2): 620 -626 .
[6] CHEN Shan-xiong,WANG Xiao-gang,JIANG Ling-fa,DAI Zhang-jun. Settlement characteristics and engineering significance of subgrade surface for railway passenger dedicated line[J]. , 2010, 31(3): 702 -706 .
[7] SHI Jian-yong, QIAN Xue-de, ZHU Yue-bing. Shearing behavior of landfill composite liner by simple shear test[J]. , 2010, 31(4): 1112 -1117 .
[8] TANG Ming-ming, WANG Zhi-yin, MA Lan-ping, ZENG Zhi-hua, ZHANG Zhi-pei. Study of design parameters of oil-gas pipeline traversing loess gully[J]. , 2010, 31(4): 1314 -1318 .
[9] GONG Feng-qiang, LI Xi-bing, ZHANG Wei. Rockburst prediction of underground engineering based on Bayes discriminant analysis method[J]. , 2010, 31(S1): 370 -377 .
[10] XU Fei,XU Wei-ya,WEN Sen,LIU Zao-bao,ZHAO Yan-xi. Projection pursuit based on particle swarm optimization for evaluation of surrounding rock stability[J]. , 2010, 31(11): 3651 -3655 .