›› 2006, Vol. 27 ›› Issue (S1): 836-838.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on nonlinear response of casing pipe pile to lateral loads

WANG Teng1,LI Da-yong2,ZHANG Yu-zhe1   

  1. 1. School of Petroleum Engineering, China University of Petroleum, East China, Dongying 257061, China; 2. School of Civil Engineering, Shandong University of Science & Technology, Qingdao 266510, China
  • Received:2006-05-20 Published:2006-12-15

Abstract: A new type of casing pipe pile foundation is presented to increase the offshore pile foundation lateral capacity or decrease the lateral displacement. The nonlinear response of the casing pile under lateral load is studied by means of p-y curves. The influence to the pile response of the depth below the seafloor and the width of the casing pipe is investigated and compared with the common pile. The results show that the casing pipe can excite the pile-soil interaction effectively and increase the pile foundation capacity and decrease its response to lateral loads.

Key words: casing pipe, pile - soil interaction, p-y curves, nonlinear, offshore pile foundations

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[2] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[3] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[4] ZHU Sai-nan, YIN Yue-ping, LI Bin, . Shear creep behavior of soft interlayer in Permian carbonaceous shale [J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386.
[5] CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, . Relationship between saturation degree and B value for loess [J]. Rock and Soil Mechanics, 2019, 40(3): 834-842.
[6] FANG Jin-jin, FENG Yi-xin, ZHAO Wei-long, WANG Li-ping, YU Yong-qiong, . Nonlinear constitutive model for intact loess in true tri-axial tests [J]. Rock and Soil Mechanics, 2019, 40(2): 517-528.
[7] YIN Qian, JING Hong-wen, LIU Ri-cheng, SU Hai-jian, YU Li-yuan, WANG Ying-chao. Nonlinear fluid flow behaviors in fracture networks subjected to various lateral pressure ratios [J]. Rock and Soil Mechanics, 2019, 40(2): 592-600.
[8] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[9] LIU Bin, XU Hong-fa, DONG Lu, , MA Yu-qing, , LI Ke-liang, . A nonlinear rheological model of rock salt based on DS-dashpot under cyclic loading [J]. Rock and Soil Mechanics, 2018, 39(S2): 107-114.
[10] LI Hai-li, ZHANG Chen-rong, LU Kai,. Nonlinear analysis of response of buried pipelines induced by tunneling [J]. , 2018, 39(S1): 289-296.
[11] GENG Zhe, LI Shu-chen, ZHAO Shi-sen, ZHANG Jing-yu. Nonlinear dynamic analysis and application of thrust force for slurry balance shield [J]. , 2018, 39(S1): 469-476.
[12] XIA Chang-qing, HU An-feng, CUI Jun, Lü Wen-xiao, XIE Kang-he, . Analytical solutions for one-dimensional nonlinear consolidation of saturated soft layered soils [J]. , 2018, 39(8): 2858-2864.
[13] FEI Hong-lu, BAO Shi-jie, YANG Zhi-guang. Influence of oblique incidence of stress wave on rock joint ends [J]. , 2018, 39(7): 2327-2335.
[14] ZHOU Ya-dong, DENG An, LU Qun, . A one-dimensional consolidation model considering large strain for unsaturated soil [J]. , 2018, 39(5): 1675-1682.
[15] YU Xiang, KONG Xian-jing, ZOU De-gao, ZHOU Chen-guang, . Seismic wave input method for nonlinear dynamic analysis of earth dam built on overburden [J]. , 2018, 39(5): 1858-1866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
[2] GONG Cheng-ming,CHENG Qian-gong,LIU Zheng-ping. Centrifuge model tests on excavation and reinforcement effect of loess slope[J]. , 2010, 31(11): 3481 -3486 .
[3] WEN Sen,YANG Sheng-qi. Study of deformations of surrounding rock of tunnel based on Hoek-Brown criterion[J]. , 2011, 32(1): 63 -69 .
[4] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[5] YUAN Da-jun,DING Zhou-xiang,ZHU He-hua. Analysis of consolidation coefficients in classic small-strain consolidation theory[J]. , 2009, 30(6): 1649 -1652 .
[6] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[7] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .
[8] CUI Chua-an, SUN Yun-hou, LI Yong-tao, LI Da-peng. WANG Zi-jia. Theoretical analysis and numerical simulation of effect of unloading hole under explosive loading[J]. , 2011, 32(S1): 669 -0673 .
[9] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .
[10] ZHONG Sheng , WANG Chuan-ying , WU Li-xin , WU Yu-hua , WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies ——Forward simulation on its geometric effect[J]. , 2011, 32(5): 1583 -1588 .