›› 2016, Vol. 37 ›› Issue (S1): 263-266.doi: 10.16285/j.rsm.2016.S1.034

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of measuring mode III fracture toughness of sandstone disk specimen with an edged crack

KUO Chun-chih1, HSIEH Chi-tai2, WANG Chein-lee1   

  1. 1. Department of Resources Engineering, Cheng Kung University, Tainan, Taiwan 70101, China; 2. Department of Geosciences, Taiwan University, Taipei, Taiwan 10167, China
  • Received:2015-11-27 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by Ministry of Science and Technology (Taiwan) (NSC-104-2221-E-006-208).

Abstract: This study conduct a mode III fracture toughness measurement test on a sandstone specimen with an edge crack in an anti-plane, shear-loading situation and obtain the mode III fracture toughness by using derived theoretical formulas. The testing conditions do not include confining pressure, and the mode III fracture test is conducted under a uniaxial load application. In addition, the study used a change in specimen properties, caused by exposure to high temperature, as a variable condition for further discussion. The research results show that the proposed method of performing the mode III fracture toughness test is reliable and stable. Heating at temperatures up to 200 ℃ enhance the sandstone specimen’s mode III fracture toughness. The toughness decline after 200 ℃ and then leveled off after reaching 600 ℃. The uniaxial compressive strength, dynamic Young’s modulus, dynamic Poisson’s ratio, and mode III fracture toughness show a declining trend following an increase in sintering temperature. The specimen appeared to be molten, and evident micro cracks appear on the surface.

Key words: sandstone, anti-plane shear-loading, mode III fracture toughness

CLC Number: 

  • TU 452
[1] ZHANG Ke, LI Na, CHEN Yu-long, LIU Wen-lian, . Evolution characteristics of strain field and infrared radiation temperature field during deformation and rupture process of fractured sandstone [J]. Rock and Soil Mechanics, 2020, 41(S1): 95-105.
[2] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[3] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[4] HAN Chao, PANG De-peng, LI De-jian. Analysis of energy evolution during the step loading and unloading creep experiments of sandstone [J]. Rock and Soil Mechanics, 2020, 41(4): 1179-1188.
[5] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[6] LI Bin, HUANG Da, MA Wen-zhu, . Study on the influence of bedding plane on fracturing behavior of sandstone [J]. Rock and Soil Mechanics, 2020, 41(3): 858-868.
[7] ZHANG Zong-tang, GAO Wen-hua, ZHANG Zhi-min, TANG Xiao-yu, WU Jun, . Evolution of particle disintegration of red sandstone using Weibull distribution [J]. Rock and Soil Mechanics, 2020, 41(3): 877-885.
[8] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[9] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[10] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[11] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[12] JIANG De-yi, ZHANG Shui-lin, CHEN Jie, YANG Tao, WANG Xiao-shu, XIE Kai-nan, JIANG Xiang, . Low filed NMR and acoustic emission probability density study of freezing and thawing cycles damage for sandstone [J]. Rock and Soil Mechanics, 2019, 40(2): 436-444.
[13] YU Jin, ZHANG Xin, CAI Yan-yan, LIU Shi-yu, TU Bing-xiong, FU Guo-feng, . Meso-damage and mechanical properties degradation of sandstone under combined effect of water chemical corrosion and freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(2): 455-464.
[14] XU Bao-tian, ZHANG Li-ping, YAN Xiao-ying, QIU De-jun, . Effect of void characteristics on deteriorating rules of sandstone due to water [J]. Rock and Soil Mechanics, 2019, 40(2): 561-569.
[15] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!