›› 2016, Vol. 37 ›› Issue (S1): 530-536.doi: 10.16285/j.rsm.2016.S1.069

• Numerical Analysis • Previous Articles     Next Articles

Numerical simulation of deformation localization for defective rock based on meshless method

LI Shu-cai, SUN Chao-qun, XU Zhen-hao, LI Li-ping, ZHANG Yan-huan, WU Jing, ZHOU Lun   

  1. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan, Shandong 250061, China
  • Received:2015-01-11 Online:2016-06-16 Published:2018-06-09
  • Supported by:
    This work was supported by the the National Basic Research Program of China (973 Program(2013CB036000) and the National Natural Science Foundation of China (51479106, 51509147).

Abstract: Based on the meshless method, the self-developed program is proposed to analyze the rock mechanics. In the present program, the Mohr-Coulomb criterion is adopted and the softening of material after plastic yield can be considered. The deformation of defective rock under uniaxial compression can be analyzed; and the evolution of deformation localization in defective rock can also be clarified. The calculation results show that the process of destruction of rock specimen is evolutionary. The material destruction and acoustic emission occurs at the defective weak particle of rock specimen with the loading process. A localized deformation zone produced with the crack expanding. A distinct shear failure zone formed in the rock specimen with the expansion and development of localized deformation zone. Defective particles played a control role in the specimen damage process. Rock acoustic emission records the plastic failure process of rock materials. The development of shear failure zone and plastic zone of rock specimen has a very similar way. However, the plastic area is greater than the shear failure zone; and the shear failure zone is located in the plastic zone. It can be concluded that the localized deformation occurs before the stress-loading step (strain) reaches the point of peak strength.

Key words: meshless method, deformation localization, defective rock, acoustic emission, numerical simulation

CLC Number: 

  • TU 452
[1] WANG Chuang-ye, CHANG Xin-ke, LIU Yi-Lin, GUO Wen-bin, . Spectrum evolution characteristics of acoustic emission during the rupture process of marble under uniaxial compression condition [J]. Rock and Soil Mechanics, 2020, 41(S1): 51-62.
[2] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[3] ZHANG Xiao-jun, LI Xiao-cheng, LIU Guo-lei, LI Bao-yu, . Experimental study on the effect of local risk reduction of pressure relief hole for splitting [J]. Rock and Soil Mechanics, 2020, 41(S1): 171-178.
[4] GAN Yi-xiong, WU Shun-chuan, REN Yi, ZHANG Guang, . Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Rock and Soil Mechanics, 2020, 41(7): 2324-2332.
[5] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[6] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, XIE Xin, . Experimental study on surrounding rock deformation and acoustic emission characteristics of rectangular roadway under different loads [J]. Rock and Soil Mechanics, 2020, 41(6): 1818-1828.
[7] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[8] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[9] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[10] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
[11] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[12] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[13] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[14] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[15] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!