›› 2016, Vol. 37 ›› Issue (8): 2359-2365.doi: 10.16285/j.rsm.2016.08.031

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of mechanical characteristic and optimization of initial tensile tonnage of prestressed anchor cable

DENG Jian1, 2, XIAO Ming1, 2, XIE Bing-bing1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2014-10-08 Online:2016-08-11 Published:2018-06-09
  • Supported by:

    This work was supported by the Major Research Plan of National Natural Science Foundation of China (91215301), the National Natural Science Foundation of China (51279136) and the National Natural Science Foundation for Youth of China (51209164).

Abstract: Based on the role of prestressed anchor and the mechanical transmission mechanism of anchorage interface, an anchorage interface stress model is developed. Then an analytical method is proposed to calculate the anchorage stress by considering the shear slip of anchorage interface. On the basis of the prestress loss mechanism, various factors causing prestress loss are analyzed, and then a method for calculating prestress loss is developed under the influence of various factors. According to fundamental theory of the solution of stress distribution, a method is presented to estimate the initial tensile tonnage of the anchor cable. During the excavation of underground caverns, the stress increment is considered as safety margin of initial tension of the anchor cable, and the prestress loss can also be taken into account. From the above, a finite element calculation program is compiled, and a case study of an underground caverns shows that the proposed method is reasonable.

Key words: underground caverns, prestressed anchor cable, mechanical characteristic, anchoring mechanism, prestress loss, initial tensile tonnage

CLC Number: 

  • TU 457

[1] XU Hai-liang, TAN An-fu, SONG Yi-min, ZHU Li, AN Dong, DU Yu, GAO Han-jun, . Mechanical characteristics of contact surfaces during the whole process of deformation and damage of layered composite rocks [J]. Rock and Soil Mechanics, 2023, 44(6): 1683-1694.
[2] RONG Hao-yu, WANG Wei, LI Gui-chen, XU Jia-hui, LIANG Dong-xu, . Micromechanical characteristics of hydration instability of rock-anchorage agent structure [J]. Rock and Soil Mechanics, 2023, 44(3): 784-798.
[3] LI Dong-dong, SHENG Qian, XIAO Ming, WANG Xiao-mao, . Meso-mechanism of surrounding rock local damage of underground powerhouse cavern based on improved particle flow acoustic emission sheet [J]. Rock and Soil Mechanics, 2022, 43(S2): 117-129.
[4] LI Ran, WANG Sheng-tao, ZHANG Ding-li, CHEN Ping, PAN Hong-gui, LI Ao, . Control mechanism and engineering application of pillar-reinforcing bolt in closely spaced tunnels [J]. Rock and Soil Mechanics, 2022, 43(7): 1865-1876.
[5] LENG Wu-ming, DENG Zhi-long, XU Fang, ZHANG Qi-shu, DONG Jun-li, LIU Si-hui. A prestress loss model for subgrade considering creep effect of subgrade soil [J]. Rock and Soil Mechanics, 2022, 43(6): 1671-1682.
[6] ZHANG Wen-bo, BAI Wei, KONG Ling-wei, FAN Heng-hui, YUE Xiu, . Effect of leaching time on physical and mechanical characteristics of lateritic soil [J]. Rock and Soil Mechanics, 2022, 43(2): 443-452.
[7] AN Cai-long, LIANG Ye, WANG Liang-qing, DENG Shan, SUN Zi-hao, FAN Bin-qiang, ZHENG Luo-bin. Three-dimensional optimization design for the direction angle of anchor cable reinforcement in wedge rock slope [J]. Rock and Soil Mechanics, 2020, 41(8): 2765-2772.
[8] LI Xin-ping, BIAN Xing, LUO Yi, LÜ Jun-lin, REN Gao-feng, . Study on attenuation law of blasting vibration propagation of side wall of underground cavern [J]. Rock and Soil Mechanics, 2020, 41(6): 2063-2069.
[9] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[10] JIA Zhi-bo, TAO Lian-jin, SHI Ming. Stability analysis of prestressed anchor cable slope under seismic loads [J]. Rock and Soil Mechanics, 2020, 41(11): 3604-3612.
[11] YANG Qing-guang, LIU Xiong, LIU Jie, HE Jie, LIANG Ling-chuan, CHEN Bin. Influence of the pre-grouting in free segment on the pullout test of prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(10): 3317-3325.
[12] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[13] PENG Shou-jian, YUE Yu-qing, LIU Yi-xin, XU Jiang, . Anisotropic characteristics and shear mechanical properties of different genetic structural planes [J]. Rock and Soil Mechanics, 2019, 40(9): 3291-3299.
[14] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[15] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] HUANG Qing-xiang, ZHANG Pei, DONG Ai-ju. Mathematical model of “arch beam” of thick sandy soil layer movement in shallow seam[J]. , 2009, 30(9): 2722 -2726 .
[3] JING Zhi-dong, LIU Jun-xin. Experimental research on dynamic deformations of semi-rigid structures of subgrade bed-mudstone of red beds[J]. , 2010, 31(7): 2116 -2121 .
[4] LIU Zheng-hong,LIAO Yan-hong,ZHANG Yu-shou. Preliminary study of physico-mechanical properties of Luanda sand[J]. , 2010, 31(S1): 121 -126 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] ZHANG Yuan, WAN Zhi-jun, KANG Jian-rong, ZHAO Yang-sheng. Analysis of stage characteristics of sandstone permeability under conditions of temperature and triaxial stress[J]. , 2011, 32(3): 677 -683 .
[10] ZHANG Xue-chan , GONG Xiao-nan , YIN Xu-yuan , ZHAO Yu-bo. Monitoring analysis of retaining structures for Jiangnan foundation pit of Qingchun road river-crossing tunnel in Hangzhou[J]. , 2011, 32(S1): 488 -0494 .