›› 2016, Vol. 37 ›› Issue (9): 2672-2678.doi: 10.16285/j.rsm.2016.09.032

• Numerical Analysis • Previous Articles     Next Articles

Material point strength reduction method and its application to slope engineering

WANG Shuang1, LI Xiao-chun1, SHI Lu1, LIU Zhao-sheng2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. Northern Engineering & Technology Corporation, Metallurgical Corporation of China Ltd., Dalian, Liaoning 116622, China
  • Received:2014-10-09 Online:2016-09-12 Published:2018-06-09

Abstract: The material point method (MPM) is applicable to simulate large deformation of continuous medium, such as slope failure process. The strength reduction method (RSM) is applied to material point method for evaluating slope stability. In a slope stability evaluation example, the safety factor and slip surface position are got respectively by limit equilibrium method (LEM), finite element strength reduction method (FEM-RSM) and material point strength reduction method (MPM-RSM). Compared with LEM, the caculated results of safety factor value and slip surface position by MPM-RSM are basically the same with LEM and FEM-RSM. Compared with FEM-RSM, the physical meaning of MPM-RSM’s failure evaluation criterion is more clear. Taking advantage of its superiority in calculating large deformation, MPM-RSM can evaluate the consequences after slope failure. A case study shows its performance in evaluating debris shape and sliding distance for different safety factors, especially the advantage in estimating the impact degree of landslide on adjacent buildings. MPM can be used for the evaluation of slope stability and evaluation of slope failure consequence.

Key words: strength reduction method, material point method, slope stability evaluation, safety factor

CLC Number: 

  • TU 457

[1] XIAO Ming-qing, XU Chen, . Discussion on stability analysis method of tunnel surrounding rock based on critical stable section [J]. Rock and Soil Mechanics, 2020, 41(5): 1690-1698.
[2] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[3] ZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, SUN Chao-yi, ZHANG Ya-peng, LIU Xiu-min, . Analysis of flexural toppling failure of rock slopes subjected to the load applied on the top [J]. Rock and Soil Mechanics, 2019, 40(8): 2938-2946.
[4] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, NIE Ao-xiang, . Upper-bound limit analysis of tunnel face stability under advanced support [J]. Rock and Soil Mechanics, 2019, 40(6): 2154-2162.
[5] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[6] YIN Xiao-tao, XUE Hai-bin, TANG Hua, REN Xing-wen, SONG Gang,. Dialectical unity of slope local and global stability analysis methods [J]. , 2018, 39(S1): 98-104.
[7] YIN Xiao-tao, YAN Fei, QIN Yu-qiao, ZHOU Lei, WANG Dong-ying, . Dynamic stability evaluation on Huaping bedding bank slope of Jinshajiang River Bridge in Huali Expressway under seismic action [J]. , 2018, 39(S1): 387-394.
[8] XU Ming, TANG Ya-feng, LIU Xian-shan, LUO Bin, TANG Dao-yong,. Seismic dynamic response of rock slope anchored with adaptive anchor cables [J]. , 2018, 39(7): 2379-2386.
[9] LI Qing-chuan, LI Shu-cai, WANG Han-peng, ZHANG Hong-jun,ZHANG Bing, ZHANG Yu-qiang,. Stability analysis and numerical experiment study of excavation face for tunnels overlaid by quicksand stratum [J]. , 2018, 39(7): 2681-2690.
[10] YAN Min-jia, XIA Yuan-you, LIU Ting-ting. Limit analysis of bedding rock slopes reinforced by prestressed anchor cables under seismic loads [J]. , 2018, 39(7): 2691-2698.
[11] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
[12] ZHANG Hai-tao, LUO Xian-qi, SHEN Hui, BI Jin-feng. Vector-sum-based slip surface stress method for analysing slip mass stability [J]. , 2018, 39(5): 1691-1698.
[13] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[14] WANG Zhen, YE Xiao-ming, LIU Yong-xin,. Improved Janbu slices method considering progressive destruction in landslide [J]. , 2018, 39(2): 675-682.
[15] YIN Guang-zhi, WANG Wen-song, WEI Zuo-an, CAO Guan-sen,ZHANG Qian-gui, JING Xiao-fei,. Analysis of the permanent deformation and stability of high tailings dam under earthquake action [J]. , 2018, 39(10): 3717-3726.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!