›› 2017, Vol. 38 ›› Issue (S1): 305-312.doi: 10.16285/j.rsm.2017.S1.038

• Geotechnical Engineering • Previous Articles     Next Articles

Study of stability calculation method of trench face reinforcement of diaphragm wall

JIN Ya-bing   

  1. Shenzhen Geology Bureau, Shenzhen, Guangdong 518023, China
  • Online:2017-06-22 Published:2018-06-05
  • Supported by:

    This work was supported by the Plan Project of Geological Engineering Academician Workstation of Shenzhen Geology Bureau of Guangdong Province(2013B090400025).

Abstract: The stability of trench face of diaphragm wall is the most critical question in diaphragm wall construction quality and construction safety; and collapse accidents of trench face occur now and then due to inappropriate protection measure. The paper first analyzes the instability mechanism and form of trench face, and sums up both the disadvantages and advantages of every kind of anti-instability reinforcement measures for trench face. The paper also puts forward the suggestion value of rational reinforcement width and the principle of certainty of rational depth of deep mixing pile. Then, it summarizes the application conditions of every kind of stability safety factor calculation method of trench face under the terms of slurry protection, and discusses the rationality of every kind of safety factor value, and gives the recommended values. Finally, it provides the stability safety factor calculation method and decision criterion under the terms of mixing pile reinforcement. Through a number of engineering practices, the reliability of stability safety factor calculation method and stability decision criterion of trench face and both the rationality of depth as well as width under the terms of mixing pile reinforcement have been verified.

Key words: diaphragm wall, trench face, stability, mixing pile, calculation method

CLC Number: 

  • TU 473

[1] LIU Yang, LIU Wei, SHI Pei-xin, ZHAO Yu, WANG Miao, . Local instability analysis of the ultra-deep wall-to-slotted in water rich soft layer [J]. Rock and Soil Mechanics, 2020, 41(S1): 9-18.
[2] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[3] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[4] XIAO Shi-guo, LIU Hang, YU Xin-zuo. Analysis method of seismic overall stability of soil slopes retained by gravity walls anchored horizontally with flexible reinforcements [J]. Rock and Soil Mechanics, 2020, 41(6): 1836-1844.
[5] WANG Hong-xin, SHEN Xu-kai, . Heave-resistant stability analysis method of foundation pit considering support [J]. Rock and Soil Mechanics, 2020, 41(5): 1680-1689.
[6] XIAO Ming-qing, XU Chen, . Discussion on stability analysis method of tunnel surrounding rock based on critical stable section [J]. Rock and Soil Mechanics, 2020, 41(5): 1690-1698.
[7] ZHU Yan-peng, YAN Zi-hao, ZHU Yi-fan. Stability calculation of micro steel tube mortar composite pile in soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1339-1346.
[8] YANG Feng, HE Shi-hua, WU Yao-jie, JI Li-yan, LUO Jing-jing, YANG Jun-sheng. Tunnel face stability analysis by the upper-bound finite element method with rigid translatory moving element in heterogeneous clay [J]. Rock and Soil Mechanics, 2020, 41(4): 1412-1419.
[9] MI Bo, XIANG Yan-yong, . Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[10] ZHOU Zi-han, CHEN Zhong-hui, WANG Jian-ming, ZHANG Ling-fan, NIAN Geng-qian. Catastrophe analysis of open-pit slope stability under blasting load [J]. Rock and Soil Mechanics, 2020, 41(3): 849-857.
[11] BI Zong-qi, GONG Quan-mei, ZHOU Shun-hua, CHENG Qian, . Experimental study of the evolution law of vertical soil arch under cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(3): 886-894.
[12] SHI Zhen-ning, QI Shuang-xing, FU Hong-yuan, ZENG Ling, HE Zhong-ming, FANG Rui-min, . A study of water content distribution and shallow stability of earth slopes subject to rainfall infiltration [J]. Rock and Soil Mechanics, 2020, 41(3): 980-988.
[13] LIU Yi-yang, SONG Xuan-min, ZHU De-fu, LI Zhu. Dynamic structural mechanical behavior and response characteristics of large key blocks [J]. Rock and Soil Mechanics, 2020, 41(3): 1019-1028.
[14] SU Yong-hua, LI Cheng-cheng. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398.
[15] ZHU Yan-peng, TAO Jun, YANG Xiao-hui, PENG Jun-guo, WU Qiang, . Design and numerical analyses of high-fill slope strengthened by frame with prestressed anchor-plates [J]. Rock and Soil Mechanics, 2020, 41(2): 612-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!