Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (2): 389-398.doi: 10.16285/j.rsm.2019.0001

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Stability analysis of slope based on Green-Ampt model under heavy rainfall

SU Yong-hua, LI Cheng-cheng   

  1. College of Civil Engineering, Hunan University, Changsha, Hunan 410082, China
  • Received:2019-01-02 Revised:2019-05-29 Online:2020-02-11 Published:2020-02-08
  • Contact: LI Cheng-cheng, male, born in 1991, Master degree candidate, majoring in geotechnical engineering. E-mail: Lcc_ah@163.com E-mail: yong_su1965@126.com
  • About author:SU Yong-hua, male, born in 1965, PhD, Professor, PhD supervisor,Research interests: reliability of geotechnical engineering. E-mail: yong_su1965@126.com
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51578232, 51878266).

Abstract: The method of rainfall infiltration analysis directly affects the prediction and prevention of rainfall-induced landslides. Green-Ampt (GA) model, which has clear physical meaning and few parameters, has been paid more and more attention in the analysis of rainfall-induced landslides. However, this method ignores the existence of the unsaturated layer of the wetting layer and the seepage of the saturated layer, which affects the calculation accuracy. In view of the above deficiencies, the LSGA model is established based on the stratified hypothesis and the saturated layer seepage, and the expression of slope stability coefficient is established. All results show that LSGA model can be simplified to GA model for infinite slope without considering the stratified hypothesis of wetting layer, which indicates that GA model is a special case of LSGA model. The slope infiltration depth and instability time of GA are obviously behind the LSGA model. The saturated layer seepage has slight effect on the characteristics of the wetting layer, but has a great influence on the stability of slope. On the contrary, the effect of slope length on wetting layer characteristics is important, but the effect on slope stability is slight. All results obtained by using LSGA model and the stability evaluation method are basically consistent with the phenomena revealed by the model test, which proves that the method has better accuracy and reliability than others.

Key words: rainfall infiltration, Green-Ampt model, stratified hypothesis, seepage, slope stability

CLC Number: 

  • TU 431
[1] LEI Hua-yang, XU Ying-gang, MIAO Jiang-yan, LIU Xu. Experimental investigation on dynamic properties of soft clay under coupled cyclic-seepage loads [J]. Rock and Soil Mechanics, 2021, 42(3): 601-610.
[2] WANG Li, LI Gao, CHEN Yong, TAN Jian-min, WANG Shi-mei, GUO Fei, . Field model test on failure mechanism of artificial cut-slope rainfall in Southern Jiangxi [J]. Rock and Soil Mechanics, 2021, 42(3): 846-854.
[3] ZHENG Hong, ZHANG Tan, WANG Qiu-sheng. One package of schemes for some difficult issues in finite element plasticity analysis [J]. Rock and Soil Mechanics, 2021, 42(2): 301-314.
[4] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[5] WANG Ming-nian, JIANG Yong-tao, YU Li, DONG Yu-cang, DUAN Ru-yu, . Analytical solution of startup critical hydraulic gradient of fine particles migration in sandy soil [J]. Rock and Soil Mechanics, 2020, 41(8): 2515-2524.
[6] FANG Ying-guang, CHEN Jian, GU Ren-guo, BA Ling-zhen, SHU Hao-kai, . Applicability of clay permeability based on modified Kozeny-Carman equation by effective specific surface area [J]. Rock and Soil Mechanics, 2020, 41(8): 2547-2554.
[7] PAN Yong-liang, JIAN Wen-xing, LI Lin-jun, LIN Yu-qiu, TIAN Peng-fei. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model [J]. Rock and Soil Mechanics, 2020, 41(8): 2685-2692.
[8] ZHANG Jin-xun, QI Yi, YANG Hao, SONG Yong-wei. Temperature field expansion of basin-shaped freezing technology in sandy pebble stratum of Beijing [J]. Rock and Soil Mechanics, 2020, 41(8): 2796-2804.
[9] LIU Zheng-hong, ZHANG Long, ZHENG Jian-guo, ZHANG Wei, YU Yong-tang, . Testing device and experimental study on anti-seepage ability of sliding micrometer tube [J]. Rock and Soil Mechanics, 2020, 41(7): 2504-2515.
[10] ZHANG Qing-yan, CHEN Wei-zhong, YUAN Jing-qiang, LIU-Qi, RONG Chi, . Experimental study on evolution characteristics of water and mud inrush in fault fractured zone [J]. Rock and Soil Mechanics, 2020, 41(6): 1911-1922.
[11] WEN Xin, HU Zhi-ping, ZHANG Xun, CHAI Shao-bo, LÜ Xin-bo, . Modified infiltration model for saturated-unsaturated loess based on Green-Ampt model and its parametric study [J]. Rock and Soil Mechanics, 2020, 41(6): 1991-2000.
[12] HU Sheng-bin, DU Guo-ping, XU Guo-yuan, ZHOU Tian-zhong, ZHONG You-xin, SHI Chong-qing, . Sonar seepage vector method based on energy measurement and its application [J]. Rock and Soil Mechanics, 2020, 41(6): 2143-2154.
[13] XUE Yang, WU Yi-ping, MIAO Fa-sheng, LI Lin-wei, LIAO Kang, ZHANG Long-fei. Seepage and deformation analysis of Baishuihe landslide considering spatial variability of saturated hydraulic conductivity under reservoir water level fluctuation [J]. Rock and Soil Mechanics, 2020, 41(5): 1709-1720.
[14] YANG He, CHENG Wei-min, LIU Zhen, WANG Wen-yu, ZHAO Da-wei, WANG Wen-di. Fractal characteristics of effective seepage channel structure of water infusion coal based on NMR experiment [J]. Rock and Soil Mechanics, 2020, 41(4): 1279-1286.
[15] MI Bo, XIANG Yan-yong, . Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground [J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Lian-heng,LUO Qiang,LI Liang,YANG Feng,DAN Han-cheng. Upper bound quasi-static analysis of dynamic stability of layered rock slopes[J]. , 2010, 31(11): 3627 -3634 .
[2] KANG Yong-jun,YANG Jun,SONG Er-xiang. Calculation method and parameter research for time-history of factor of safety of slopes subjected to seismic load[J]. , 2011, 32(1): 261 -268 .
[3] LI Rong-jian,YU Yu-zhen,Lü He,LI Guang-xin. Dynamic centrifuge modeling of piles-reinforced slope on saturated sandy foundation[J]. , 2009, 30(4): 897 -902 .
[4] XIAO Cheng-zhi, SUN Jian-cheng, LI Yu-run, LIU Xiao-peng. Mechanism analysis of ecological slope protection against runoff erosion by grass jetting on 3D geomat[J]. , 2011, 32(2): 453 -458 .
[5] SU Li-jun, LIAO Hong-jian, YIN Jian-hua. Investigation on stress variation in soil surrounding a soil nail during installation and pull-out[J]. , 2011, 32(S1): 124 -128 .
[6] ZHANG Ya-min, MA Feng-shan, XU Jia-mo, ZHAO Hai-jun. Deformation laws of rock mass due to transform from open-pit to underground mining in high stress area[J]. , 2011, 32(S1): 590 -0595 .
[7] ZHOU Wan-huan , YIN Jian-hua. Finite element modeling soil nail pullout behavior and effects of overburden pressure and dilation[J]. , 2011, 32(S1): 691 -0696 .
[8] QIAN Jian-gu , HUANG Mao-song. Micro-macro mechanismic analysis of plastic anisotropy in soil[J]. , 2011, 32(S2): 88 -93 .
[9] ZHU Chong-hui ,WANG Zeng-hong ,SHIROKOV V. N.. Research on compaction test of single compaction method[J]. , 2012, 33(1): 60 -64 .
[10] LU Hai-feng , LIU Quan-sheng , CHEN Cong-xin. Improvement of cantilever beam limit equilibrium model of counter-tilt rock slopes[J]. , 2012, 33(2): 577 -584 .