Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (3): 663-672.doi: 10.16285/j.rsm.2022.0521

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Effect of rubber-sand mixtures gradation on shear characteristics of mixed soil

LIU Fei-yu1, LI Hao-ze1, FU Jun1, SUN Hong-lei2   

  1. 1. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China; 2. College of Civil Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • Received:2022-04-14 Accepted:2022-06-07 Online:2023-03-21 Published:2023-03-23
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078285).

Abstract: To study the shear characteristics of rubber-sand mixtures, the effects of four rubber-sand mixtures gradations (one type of gap gradation, two types of continuous gradations, and one type of open gradation), three rubber contents (10%, 30%, and 60%), and three vertical stresses (30 kPa, 60 kPa, and 90 kPa) on the strength characteristics and volumetric change characteristics of rubber-sand mixtures were investigated by using a laboratory large-scale direct shear apparatus; and based on the laboratory direct shear test, the discrete element numerical models of pure sand and rubber-sand mixtures were established according to the same gradation and rubber content. The intrinsic mechanical mechanism of rubber-sand mixtures was explored from the perspective of particle contact state and displacement. The results show that the shear stress curve of rubber-sand mixtures is the same as that of pure sand at low rubber content, but its shear strength is lower than that of pure sand; the shear stress of rubber-sand mixtures increases with the increase of vertical stress, and the shear strength of continuous gradation SR2 is the highest among the four gradations of rubber-sand mixtures; the admixture of rubber particles can effectively inhibit the dilatancy of sandy soil, among which the gap grade SR1 has the best effect on inhibiting soil dilatancy, and the dilatancyis reduced by 37% compared with that of pure sand. The internal friction angle of rubber-sand mixtures decreases with the increase of rubber content, and the internal friction angle of continuous gradation SR2 is the largest under the same rubber content; rubber particles mainly participate in the formation of weak force chain in the rubber-sand mixtures force chain network, and the shear zone width of rubber-sand mixtures is smaller than that of pure sand.

Key words: rubber-sand mixtures, direct shear test, grading, force chain network, shear zone

CLC Number: 

  • TU441
[1] FAN Lei, YU Mei-wan, WU Ai-qing, XIANG Qian. Evolution of shear strength of interlayer dislocation zone under hydro-mechanical coupling conditions [J]. Rock and Soil Mechanics, 2023, 44(7): 1959-1970.
[2] ZHENG Shuang, YONG Rui, DU Shi-gui, HE Zhi-hai, ZHONG Zhen, ZHANG Ying-ying, SUI Su-gang, . Relationship between macro and micro friction coefficients of sandstone structural surface based on nano-scratch test [J]. Rock and Soil Mechanics, 2023, 44(4): 1022-1034.
[3] YANG Xiao-pan, LI Jiang, YANG Yu-sheng, QI Ji-lin, LI Kang-da, . Study on gradation and compaction characteristics of gravels for typical damming projects [J]. Rock and Soil Mechanics, 2022, 43(6): 1607-1616.
[4] GAO Yao-hui, ZHANG Chun-sheng, SU Fang-sheng, QIU Shi-li, . Mechanism of stress-induced spalling of deep hard rocks under shear boundary condition [J]. Rock and Soil Mechanics, 2022, 43(4): 1103-1111.
[5] PAN Wen-tao, YANG Wen-bo, WU Fang-yin, HE Chuan, ZHAO Liang-liang, YAO Ren-jie, FU Jian-feng . Layered soft rock simulation based on uniaxial and triaxial tests and direct shear test [J]. Rock and Soil Mechanics, 2022, 43(12): 3437-3452.
[6] ZHOU Yuan , WEI Chang-fu, ZHOU Jia-zuo, CHEN Pan, WEI Hou-zhen, . Development and application of gas hydrate injection synthesis and direct shear test system [J]. Rock and Soil Mechanics, 2021, 42(8): 2311-2320.
[7] FAN Xiang, DENG Zhi-ying, CUI Zhi-meng, HE Zhong-ming, LIN Hang, . A new peak shear strength model for soft-hard joint [J]. Rock and Soil Mechanics, 2021, 42(7): 1861-1870.
[8] LIU Fei-yu, JIANG Huai, WANG Jun, . Experimental study on cyclic shear softening characteristics of gravel-geogrid interface [J]. Rock and Soil Mechanics, 2021, 42(6): 1485-1492.
[9] ZHU Qin, SU Li-jun, LIU Zhen-yu, YANG Shi-hao, . Study of seepage in wide-grading soils with particles migration [J]. Rock and Soil Mechanics, 2021, 42(1): 125-134.
[10] TU Yi-liang, LIU Xin-rong, REN Qing-yang, CHAI He-jun, WANG Jun-bao, YU Jia-yu, . Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate [J]. Rock and Soil Mechanics, 2020, 41(12): 3919-3928.
[11] YAN Feng-xiang, BAI Xiao-hong, DONG Xiao-qiang, . Experimental study of the frictional resistance characteristics of geogrids and construction residue interface [J]. Rock and Soil Mechanics, 2020, 41(12): 3939-3946.
[12] AI Xiao-tao, WANG Guang-jin, ZHANG Chao, HU Bin, LIU Wen-lian, MA Hong-lin, CUI Bo, . Stability analysis of high dump with wide graded waste rock [J]. Rock and Soil Mechanics, 2020, 41(11): 3777-3788.
[13] WANG Pei-tao, HUANG Zheng-jun, REN Fen-hua, ZHANG Liang, CAI Mei-feng, . Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models [J]. Rock and Soil Mechanics, 2020, 41(1): 46-56.
[14] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[15] CHAI Wei, LONG Zhi-lin, KUANG Du-min, CHEN Jia-min, YAN Chao-ping. Effect of shear rate on shear strength and deformation characteristics of calcareous sand in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(S1): 359-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .