Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (1): 125-134.doi: 10.16285/j.rsm.2020.0623

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of seepage in wide-grading soils with particles migration

ZHU Qin1, 2, SU Li-jun1, 2, 3, 4, LIU Zhen-yu1, 2, YANG Shi-hao1, 2   

  1. 1. Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China; 4. China-Pakistan Joint Research Centre on Earth Sciences, Chinese Academy of Sciences and Pakistan Higher Education Commission, Islamabad, Pakistan
  • Received:2020-05-15 Revised:2020-09-27 Online:2021-01-11 Published:2021-01-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41790432, 41761144077) and the International Partnership Program of Chinese Academy of Sciences (131551KYSB20180042).

Abstract: The study on the seepage in wide-grading soils, the main material of colluvial landslides, is the premise and foundation of the research on the mechanism of rainfall-induced colluvial landslides. The seepage in wide-grading soils is a complex process including the transport of water and fine particles. However, the migration of fine particles is usually ignored. Therefore, three soil samples with different D15 /d85 (D15 is the particle size which 15% of the coarse-grained group by weight is finer than; d85 is the particle size which 85% of the fine-grained group by weight is finer than) were tested by self-made large-scale permeameter to study the transport of water and fine particles in wide-grading soils. The results show that the D15 /d85 has a vital influence on the permeability coefficient and the migration of fine particles. The smaller permeability coefficient is, the more difficult migration of fine particles occur in soils of small D15 /d85; the larger permeability coefficient is with the violent change, and significant fine particles movement observed in soils of large D15 /d85. The change of permeability coefficient reflects the movement of fine particles in the soil, and three modes of particle migration are proposed for the wide-grading soils. The research improves the understanding of the permeability characteristics of wide-grading soils and provides a new mechanism of rainfall-induced colluvial landslides.

Key words: wide-grading soils, D15 /d85, permeability, the migration of fine particles

CLC Number: 

  • TU 411
[1] LIANG Bing, ZHANG Chai, LIU Lei, CHEN Feng, . Field permeability measurement of waste and inversion of soil-water characteristics [J]. Rock and Soil Mechanics, 2021, 42(6): 1493-1500.
[2] FU He-lin, AN Peng-tao, LI Kai, CHENG Guo-wen, LI Jie, YU Xiao-hui, . Analysis of influence of surrounding rock heterogeneity on water inrush in tunnel [J]. Rock and Soil Mechanics, 2021, 42(6): 1519-1528.
[3] LU Yang, LIU Si-hong, ZHANG Yong-gan, YANG Meng. Experimental study and mechanism analysis of permeability performance of clayey soil-rock mixtures [J]. Rock and Soil Mechanics, 2021, 42(6): 1540-1548.
[4] DENG Shen-yuan, JIANG Qing-hui, SHANG Kai-wei, JING Xiang-yang, XIONG Feng, . Effect of high temperature on micro-structure and permeability of granite [J]. Rock and Soil Mechanics, 2021, 42(6): 1601-1611.
[5] WANG Ying, ZHANG Hu-yuan, TONG Yan-mei, ZHOU Guang-ping, . Influence of joint sealing material on the sealing performance of the buffer block barrier [J]. Rock and Soil Mechanics, 2021, 42(6): 1648-1658.
[6] JU Yuan-jiang, HU Ming-jian, QIN Kun-kun, SONG Bo, SUN Zi-chen, . Experimental study of filtration & fine particles migration of calcareous sand in coral reef island [J]. Rock and Soil Mechanics, 2021, 42(5): 1245-1253.
[7] LI Yue, XU Wei-ya, YI Kui, XIE Wei-chao, ZHANG Qiang, MENG Qing-xiang, . Experimental study of unsaturated-saturated permeability characteristics of slip soil in landslide deposits [J]. Rock and Soil Mechanics, 2021, 42(5): 1355-1362.
[8] ZHANG Le, DANG Fa-ning, GAO Jun, DING Jiu-long. Experimental study on the one-dimensional nonlinear consolidation and seepage of saturated clay considering stress history under ramp loading [J]. Rock and Soil Mechanics, 2021, 42(4): 1078-1087.
[9] JIANG Wen-hao, ZHAN Liang-tong. Large strain consolidation of sand-drained ground considering the well resistance and the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2021, 42(3): 755-766.
[10] LI Ying, CHEN Dong, LIU Xing-wang, XIE Xi-rong, TONG Xing, ZHANG Jin-hong. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain [J]. Rock and Soil Mechanics, 2021, 42(3): 826-832.
[11] YANG Zhi-hao, YUE Zu-run, FENG Huai-ping, YE Chao-liang, ZHOU Jiang-tao, JIE Shao-long, . Experimental study of permeability properties of graded macadam in heavy haul railway subgrade bed surface layer [J]. Rock and Soil Mechanics, 2021, 42(1): 193-202.
[12] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[13] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[14] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[15] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[3] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[4] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[5] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[6] LI Lei, ZHU Wei, LIN Cheng, T. OHKI. Study of wet and dry properties of solidified sludge[J]. , 2009, 30(10): 3001 -3004 .
[7] ZHANG Ming-yi, LIU Jun-wei, YU Xiu-xia. Field test study of time effect on ultimate bearing capacity of jacked pipe pile in soft clay[J]. , 2009, 30(10): 3005 -3008 .
[8] LIU Zhen-ping, HE Huai-jian, LI Qiang, ZHU Fa-hua. Study of the technology of 3D modeling and visualization system based on Python[J]. , 2009, 30(10): 3037 -3042 .
[9] DU Zuo-long, HUANG Mao-song, LI Zao. DCM-based on ground loss for response of group piles induced by tunneling[J]. , 2009, 30(10): 3043 -3047 .
[10] CHEN Song, XU Guang-li, CHEN Guo-jin3 WU Xue-ting. Research on engineering geology characteristics of soil in sliding zone of Huangtupo landslide in Three Gorges Reservoir area[J]. , 2009, 30(10): 3048 -3052 .