Rock and Soil Mechanics ›› 2023, Vol. 44 ›› Issue (S1): 410-418.doi: 10.16285/j.rsm.2022.0234

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of deformation of mixed reinforced soil abutment under pavement load

XU Chao1, 2, JIN Yu1, YANG Yang1, MENG Ya1   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2022-03-02 Accepted:2022-04-20 Online:2023-11-16 Published:2023-11-19
  • Supported by:
    This work was supported by the Key Transportation Science and Technology Project of Anhui Province (2021-KJQD-016).

Abstract: The geosynthetic reinforced soil technology used in mixed reinforced soil abutment can shorten the bridge span and improve the overall performance of the abutment. To study the influence of reinforcement spacing, horizontal constraint of wall toe and way of geogrid around pile on abutment deformation, as well as the influences of road surface load, four static load model tests are carried out. The results show that the mixed reinforced soil abutment is stable and the overall deformation is small under the pavement load. The monitoring results show that the existence of pile in the reinforced soil abutment reduces the lateral deformation of the abutment. The existence of horizontal constraint of wall toe can limit the deformation of abutment, while reducing the reinforcement spacing and way of geogrid around pile with rigid casing can enhance the stiffness and integrity of the reinforced soil, reduce the horizontal displacement of the wall face and improve the working performance of the mixed reinforced soil abutment. The research results have reference value for the engineering design of mixed reinforced soil abutment.

Key words: geosynthetics, reinforced soil abutment, deformation, reinforcement spacing, horizontal constraint of wall toe, way of geogrid around pile

CLC Number: 

  • TU 411
[1] ZHANG Ji-ru, CHEN Jing-xin, WANG Lei, PENG Wei-ke . Effect of drainage conditions during triaxial shearing on particle breakage, deformation, and strength properties of calcareous sand [J]. Rock and Soil Mechanics, 2024, 45(2): 375-384.
[2] ZHAO Cheng-bin, LUO Ya-sheng, FAN Quan, MENG Zhi-tian, SUN Zhe. Viscoelastic-plastic dynamic constitutive model of cohesive soil based on triggered viscoplastic element [J]. Rock and Soil Mechanics, 2024, 45(2): 502-510.
[3] JIANG Quan, LIU Qiang, . Mechanical similarity distortion mapping principle and case analysis for underground cavern physical simulation of deformation and failure [J]. Rock and Soil Mechanics, 2024, 45(1): 20-37.
[4] LI Yu-ping, CHEN Jia-rui, SHI Jian-yong, FAN Bao-yun, . Thermo-mechanical volume change behavior and constitutive model of municipal solid waste [J]. Rock and Soil Mechanics, 2024, 45(1): 49-58.
[5] ZHU Shu, QUE Xiang-cheng, ZHU Zhen-de, ZHU Qi-zhi, . Deformation and strength characteristics of columnar jointed rock mass considering cross-sectional regularity [J]. Rock and Soil Mechanics, 2024, 45(1): 213-225.
[6] QU Xiao-lei, ZHANG Yun-kai, CHEN You-ran, CHEN You-yang, QI Cheng-zhi, . Stability analysis of fractured rock slope based on seepage-deformation coupling model using numerical manifold method [J]. Rock and Soil Mechanics, 2024, 45(1): 313-324.
[7] ZHANG Zhi-guo, MAO Min-dong, WANG Wei-dong, PAN Y T, WU Zhong-teng, . Deformation response of adjacent pile induced by foundation pit excavation under the influence of rainfall [J]. Rock and Soil Mechanics, 2023, 44(S1): 27-49.
[8] ZHANG Da-jin, XIAO Gui-yuan, WU Yue, XU Guang-li, LIU Wei, . Compression deformation mechanisms of red clay driven by heavy metal Cu2+ [J]. Rock and Soil Mechanics, 2023, 44(S1): 127-133.
[9] LI Ying-jie, ZHANG Liang, WANG Bing-qian, LIU Sheng-xin. Anisotropic three-dimensional deformation field characteristics of shale based on CT scanning and digital volume correlation method [J]. Rock and Soil Mechanics, 2023, 44(S1): 134-144.
[10] WANG Lei, ZHANG Rui, YANG Dong, KANG Zhi-qin, ZHANG Peng-yu, . Mechanical properties and strain field evolution of organic-rich shale with variable angle shear at real-time high-temperature [J]. Rock and Soil Mechanics, 2023, 44(9): 2579-2592.
[11] PAN Jia-jun, SUN Xiang-jun, ZUO Yong-zhen, WANG Jun-peng, LU Yi-wei, HAN Bing. Effects of skeleton void ratio on the strength and deformation characteristics of coarse-grained soil [J]. Rock and Soil Mechanics, 2023, 44(8): 2186-2194.
[12] GAO Xu-long, ZHANG Yu-chuan, HUANG Hong-wei, LIU Dong-fa, LIU Zhi-Fan, . Soil-water characteristics and hysteresis effects of loess considering deformation [J]. Rock and Soil Mechanics, 2023, 44(8): 2350-2359.
[13] HAN Bo-lin, LU Meng-meng. Theoretical study of consolidation of composite ground with permeable concrete piles considering pile penetration deformation [J]. Rock and Soil Mechanics, 2023, 44(8): 2360-2368.
[14] ZHANG Kun-yong, ZHANG Meng, SUN Bin, LI Fu-dong, JIAN Yong-zhou, . A calculation method for deformation of diaphragm wall of narrow deep foundation pit in soft soil considering spatio-temporal effect [J]. Rock and Soil Mechanics, 2023, 44(8): 2389-2399.
[15] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Ping, PENG Jian-bing, YIN Yue-ping, WU Shu-ren. Tensile test and simulation analysis of fracture process of loess[J]. , 2010, 31(2): 633 -637 .
[2] ZHU Fa-hua, HE Huai-jian. 3D stratum modeling based on ground penetrating radar and borehole data[J]. , 2009, 30(S1): 267 -270 .
[3] WANG Cheng-hua, AN Jian-guo. Numerical analyses of vertical bearing capacity of foundations with enlarged pile group[J]. , 2011, 32(S2): 580 -585 .
[4] YANG Jin,JIAN Wen-xing, YANG Hu-feng,ZHANG Jiu-long. Dynamic variation rule of phreatic line in Huangtupo landslide in Three Gorges reservoir area[J]. , 2012, 33(3): 853 -858 .
[5] JIANG Xin,LIU Jin-nan,HUANG Ming-xing,QIU Yan-jun. Numerical simulation of embankment on sloped weak ground reinforced by anti-slide piles[J]. , 2012, 33(4): 1261 -1267 .
[6] HUANG Jun-yu , XU Song-lin , WANG Dao-rong , HU Shi-sheng . Investigation on dynamic multiscale model for brittle granular materials[J]. , 2013, 34(4): 922 -932 .
[7] ZHU Xing ,XU Qiang ,TANG Ming-gao ,FU Xiao-min ,ZHOU Jian-bin . Experimental study of infrasound wave generated by typical rock fracture[J]. , 2013, 34(5): 1306 -1312 .
[8] PENG Chong ,ZHANG Zong-liang ,ZHANG Bing-yin ,YUAN You-ren . Deformation gradient finite element method for analyzing cracking in high earth-rack dam and its application[J]. , 2013, 34(5): 1453 -1458 .
[9] YANG Cheng-song , HE Ping , CHENG Guo-dong , ZHAO Shu-ping , DENG You-sheng . Study of stress-strain relationships and strength characteristics of saturated saline frozen silty clay[J]. , 2008, 29(12): 3282 -3286 .
[10] DING Zhen-zhou, ZHENG Ying-ren, LI Li-sheng. Trial study on variation regularity of swelling force[J]. , 2007, 28(7): 1328 -1332 .