›› 2009, Vol. 30 ›› Issue (11): 3313-3317.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Laboratory and field tests on hydraulic properties of landfilled waste

ZHANG Wen-jie1,CHEN Yun-min2,QIU Zhan-hong2,3   

  1. 1. Department of Civil Engineering, Shanghai University, Shanghai 200072 China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China; 3. College of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
  • Received:2007-10-10 Online:2009-11-10 Published:2010-01-07

Abstract:

Saturated hydraulic conductivity of landfilled waste was measured by laboratory tests. Soil-water characteristic curve (SWCC) of landfilled waste was measured using a ceramic plate extractor. A method to predict unsaturated hydraulic conductivity of landfilled waste based on its SWCC was proposed and was verified by a laboratory test. Saturated hydraulic conductivities of landfilled wastes in shallow, middle and deep depth of a landfill are measured to be 4.81×10-2cm/s, 3.50×10-3cm/s and 3.56×10-4cm/s, respectively. The results of SWCC tests show that the saturated and residual water content of landfilled wastes are high and that the SWCC curve is steep when matric suction is relatively low. The unsaturated hydraulic conductivity predicted using the proposed method is verified by an infiltration test. The result illustrates the feasibility of the proposed method.

Key words: landfilled waste, constant head permeability test, SWCC test, hydraulic conductivity

CLC Number: 

  • O 357.3
[1] PENG Jia-yi, ZHANG Jia-fa, SHEN Zhen-zhong, YE Jia-bing, . Effect of grain shape on pore characteristics and permeability of coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(2): 592-600.
[2] WANG Gang, WEI Lin-yi, WEI Xing, ZHANG Jian-min. Permeability evolution of compacted clay during triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 32-38.
[3] XU Hao-qing, ZHOU Ai-zhao, JIANG Peng-ming, LIU Shun-qing, SONG Miao-miao, CHEN Liang, . Study on bentonite content of different sand-bentonite vertical cutoff wall backfill materials [J]. Rock and Soil Mechanics, 2019, 40(S1): 424-430.
[4] FAN Ri-dong, LIU Song-yu, DU Yan-jun, . Modified fluid loss test for measuring the hydraulic conductivity of heavy metal-contaminated bentonites [J]. Rock and Soil Mechanics, 2019, 40(8): 2989-2996.
[5] CHEN Xing-zhang, CHEN Hui, YOU Yong, LIU Jin-feng,. Experiment on distribution and influence factors of uplift pressure acting on bottom of debris flow check dam [J]. , 2018, 39(9): 3229-3236.
[6] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[7] WANG Bao, DONG Xing-ling,. Hydraulic conductivity of mine leachate through geosynthetic clay liners under different effective stresses [J]. , 2017, 38(5): 1350-1358.
[8] ZHUANG Chao, ZHOU Zhi-fang, LI Zhao-feng, GUO Qiao-na. A method for determining hydraulic parameters of an overconsolidated aquitard [J]. , 2017, 38(1): 61-66.
[9] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, HUANG Qian, XUE Qiang. Experimental study of mechanical and microstructure properties of magnesium phosphate cement treated lead contaminated soils [J]. , 2016, 37(S2): 279-286.
[10] ZHAO Yu, WANG Chao-lin, WAN Wen,. Seepage flow during crack propagation process and stress coupled model under compression-shear stress conditions [J]. , 2016, 37(8): 2180-2186.
[11] DOU Hong-qiang ,HAN Tong-chun ,GONG Xiao-nan ,LI Zhi-ning,QIU Zi-yi,. Reliability analysis of slope stability considering variability of soil saturated hydraulic conductivity under rainfall infiltration [J]. , 2016, 37(4): 1144-1152.
[12] WEN Jie , HAN Jin-liang , YAO Lei-hua , LI Lun-ji,. Study of hydraulic conductivity of unsaturated loess in-situ conditions [J]. , 2015, 36(9): 2599-2606.
[13] CHEN Ren-peng, WU Jin, QI Shuai, WANG Han-lin,. A method for measuring hydraulic parameters of coarse-grained soils for high-speed railway subgrade [J]. , 2015, 36(12): 3365-3372.
[14] TONG Li-yuan , LIU Song-yu , ZHENG Chan-zheng , YANG Yi-jun , WANG Dao-gang,. Application of multifunctional SCPTU to dewatering design for deep excavation [J]. , 2015, 36(11): 3210-3216.
[15] FAN Ri-dong, DU Yan-jun, LIU Song-yu, YANG Yu-ling. Effects of addition of zeolite on compressibility and hydraulic conductivity of clayey soil-bentonite backfills for slurry-trench walls [J]. , 2014, 35(S2): 173-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[3] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[4] SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. , 2010, 31(2): 667 -672 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] YANG Zhao-liang, SUN Guan-hua, ZHENG Hong. Global method for stability analysis of slopes based on Pan’s maximum principle[J]. , 2011, 32(2): 559 -563 .
[10] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .