›› 2010, Vol. 31 ›› Issue (1): 229-232.

• Geotechnical Engineering • Previous Articles     Next Articles

Three-dimensional dynamic stability analysis of high loess slope taking the jiulongshan slope for example

CHEN Chang-lu1, 2,SHAO Sheng-jun1,ZHENG Wan-kun1,NIU Hong-tao1   

  1. 1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an Shangxi 710048 China; 2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo Henan 454000 China
  • Received:2009-08-10 Online:2010-01-10 Published:2010-02-02

Abstract:

In this paper, the geological conditions, regional tectonic activity and its distribution characteristics of Jiulongshan high loess slope located in high seismic intensity region were firstly analyzed, and then the dynamic stability of Jiulongshan high loess slope was evaluated by a new quasi-static method. Based on analyzing the sensibility of dynamic response and strength law of loess subjected by the cyclic loading and determining the earthquake the seismic inertia force along the slope height indicating the size of the earthquake, a finite difference based quasi-static strength reduction analysis method has been proposed by combining the strength reduction method and the finite difference method. Through the new method analyzing the Jiulongshan loess slope, the displacement and stress distributions of the slope, the relationship between the displacement at key points and the reduction coefficient as well as the dynamic stability safety factor of the high loess slope were obtained. The results agreed quite well with the solutions obtained by traditional two-dimensional limit equilibrium analysis method. It confirms the accuracy of the new quasi-static strength reduction method based on finite difference approach.

Key words: high loess slope, dynamic stability, new quasi-static method, strength reduction

CLC Number: 

  • TU 443
[1] LI Jian, CHEN Shan-xiong, YU Fei, JIANG Ling-fa, DAI Zhang-jun. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707-713.
[2] WANG Zhen, CAO Lan-zhu, WANG Dong, . Evaluation on upper limit of heterogeneous slope stability [J]. Rock and Soil Mechanics, 2019, 40(2): 737-742.
[3] REN Jin-lan, CHEN Xi, WANG Dong-yong, LÜ Yan-nan. Instantaneous linearization strength reduction technique for generalized Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2019, 40(12): 4865-4872.
[4] YIN Guang-zhi, WANG Wen-song, WEI Zuo-an, CAO Guan-sen,ZHANG Qian-gui, JING Xiao-fei,. Analysis of the permanent deformation and stability of high tailings dam under earthquake action [J]. , 2018, 39(10): 3717-3726.
[5] TU Yi-liang, LIU Xin-rong, ZHONG Zu-liang, DU Li-bing, WANG Peng, . The unity of three types of slope failure criteria [J]. , 2018, 39(1): 173-180.
[6] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
[7] ZHENG Gang, NIE Dong-qing, DIAO Yu, CHENG Xue-song ,. Failure mechanism of multi-bench retained foundation pit [J]. , 2017, 38(S1): 313-322.
[8] LIU Lu-lu, SONG Liang, JIAO Yu-yong, WANG Hao, ZHANG Xiu-li, XIE Bi-ting, . Study of stability of Huangtupo riverside slumping mass #1 under reservoir water level fluctuations [J]. , 2017, 38(S1): 359-366.
[9] CHENG Heng, FU Zhi-hao, ZHANG Guo-xin, YANG Bo, JIANG Chen-fang,. Reinforcement effect analysis and global safety evaluation of Wugachong arch dam and its abutment [J]. , 2017, 38(S1): 374-380.
[10] YANG Tao, HUANG Lin, FENG Jun, WU Hong-gang, QI Zong-ke,. Dynamic stability analysis of landslide based on earthquake propagation process [J]. , 2017, 38(9): 2708-2712.
[11] WANG Jin-mei, ZHANG Ying-bin, ZHAO John X., YU Peng-cheng,WANG Pan, HOU Rui-bin, HUANG Xiao-fu, WEI Tao,. A method for slope stability analysis by simulating sliding face with point contact [J]. , 2017, 38(9): 2746-2756.
[12] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[13] YAN Chao, LIU Song-yu, DENG Yong-feng, . A method of evaluating integral stability of rigid pile composite foundation based on strength reduction method [J]. , 2017, 38(3): 875-882.
[14] XU Sheng-cai, ZHANG Xin-gui, MA Fu-rong, CHEN Zi-xing, . Analysis of model test and failure of slope reinforced by soil-cement pile [J]. , 2017, 38(11): 3187-3196.
[15] ZHANG Yu-cheng , YANG Guang-hua , ZHANG You-xiang , ZHONG ZHi-hui , HU Hai-ying,. Influence of mechanical properties of sliding zone and water level changes on ancient landslide stability and its reinforcement measures [J]. , 2016, 37(S2): 43-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] LIU Yuan-ming,XIA Cai-chu. Weakening mechanism of mechanical behaviors and failure models of rock mass containing discontinuous joints under direct shear condition[J]. , 2010, 31(3): 695 -701 .
[5] GAO Yang, ZHANG Qing-song, XU Bang-shu, LI Wei. Study of mining roof abutment pressure distribution law and affecting factors under sea[J]. , 2010, 31(4): 1309 -1313 .
[6] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[7] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[8] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[9] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .