›› 2010, Vol. 31 ›› Issue (3): 673-676.

• Fundamental Theroy and Experimental Research •     Next Articles

Test study of osmotic behavior of fractured rock mass of water tunnel under high water pressure

JIANG Zhong-ming 1, 2, 3,FENG Shu-rong2,FU Sheng2,CHEN Sheng-hong1   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. Mid-South Design and Research Institute, CHECC, Changsha 410014, China; 3. Institute of Geotechnical Engineering, Changsha University of Science & Technology, Changsha 410076, China
  • Received:2008-09-10 Online:2010-03-10 Published:2010-03-31

Abstract:

Combined with high pressure permeability test, conventional pressure permeability test and indoor permeability test for fractured rock mass of high pressure water tunnel in one water-pumped storage power project, the variation law of rock mass permeability under high water pressure is analyzed to describe the relation between discharge and water pressure. Through the calculation of permeability coefficient of fractured rock mass, relation between water pressure and permeability coefficient is also discussed. By comparing the results of high pressure permeability test, conventional pressure permeability test and indoor permeability test, the environmental stress and water pressure state of rock mass are considered as the main factors influencing the permeability coefficient. The test results indicate that the permeability coefficients in high water pressure are obviously greater than ones in low water pressure state. It is also pointed out that the permeability coefficients in indoor test are greater than ones obtained from in situ test.

Key words: fractured rock mass, high pressure permeability test, permeability coefficient, state of stress

CLC Number: 

  • TV 139.1
[1] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[2] XIAO Yao, DENG Hua-feng, LI Jian-lin, ZHI Yong-yan, XIONG Yu. The deterioration effect of fractured rock mass strengthened by grouting method under long-term immersion [J]. Rock and Soil Mechanics, 2019, 40(S1): 143-151.
[3] ZHI Yong-yan, DENG Hua-feng, XIAO Yao, DUAN Ling-ling, CAI Jia, LI Jian-lin. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting [J]. Rock and Soil Mechanics, 2019, 40(S1): 237-244.
[4] LIU Li, WU Yang, CHEN Li-hong, LIU Jian-kun, . Accuracy analysis of wetting front advancing method based on numerical simulation [J]. Rock and Soil Mechanics, 2019, 40(S1): 341-349.
[5] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[6] HU Ming-jian, CUI Xiang, WANG Xin-zhi, LIU Hai-feng, DU Wei, . Experimental study of the effect of fine particles on permeability of the calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(8): 2925-2930.
[7] LI Xian, WANG Shi-ji, HE Bing-hui, SHEN Tai-yu, . Permeability condition of soil suitable for MICP method [J]. Rock and Soil Mechanics, 2019, 40(8): 2956-2964.
[8] YU Liang-gui, ZHOU Jian, WEN Xiao-gui, XU Jie, LUO Ling-hui, . Standard exploration of permeability coefficient test for clay by HCA [J]. Rock and Soil Mechanics, 2019, 40(6): 2293-2302.
[9] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[10] LI Wei, WANG Zhe-chao, BI Li-ping, LIU Jie, . Representative elementary volume size for permeable property and equivalent permeability of fractured rock mass in radial flow configuration [J]. Rock and Soil Mechanics, 2019, 40(2): 720-727.
[11] LIU Yi-fei, ZHENG Dong-sheng, YANG Bing, ZHU Bing, SUN Ming-xiang. Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil [J]. Rock and Soil Mechanics, 2019, 40(1): 403-412.
[12] LIU Yan-zhang, GUO Yun-lin , HUANG Shi-bing , CAI Yuan-tian , LI Kai-bing , WANG Liu-bao , LI Wei , . Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2018, 39(S2): 62-71.
[13] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
[14] HUANG Shi-bing, LIU Quan-sheng, CHENG Ai-ping, LIU Yan-zhang, . A coupled hydro-thermal model of fractured rock mass under low temperature and its numerical analysis [J]. , 2018, 39(2): 735-744.
[15] CHEN Qing-fa, NIU Wen-jing, ZHENG Wen-shi, LIU Jun-guang, YIN Ting-chang, FAN Qiu-yan,. Correction of the problems of blockiness evaluation method for fractured rock mass [J]. , 2018, 39(10): 3727-3734.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Dong-yan, SUN Hai-tao, ZHANG Yan. A model of shear slipping of overlying strata under mining disturbance[J]. , 2010, 31(2): 609 -614 .
[2] YE Jun-neng. Dynamic response of track system-layered transversely isotropic saturated subgrade to train loads[J]. , 2010, 31(5): 1597 -1603 .
[3] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[4] YU Tian-tang. Extended finite element method for modeling three-dimensional crack problems[J]. , 2010, 31(10): 3280 -3285 .
[5] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[6] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[7] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[8] WEI Huan-wei, YANG Min, JIA Qiang, SUN Jian-ping. Calculation model of soil pressure displacement based on Mindlin solution[J]. , 2011, 32(2): 495 -502 .
[9] ZHU Lei, HONG Bao-ning. Physico-mechanical characteristics of powdered soil of coal measure strata[J]. , 2009, 30(5): 1317 -1322 .
[10] ZHOU Chun-mei, ZHANG Ze-jun, XU Da-jie, WANG Sheng-wei, LI Xian-fu. Research on numerical simulation of paleo-tectonic stress fields and hazard prediction[J]. , 2009, 30(7): 2141 -2146 .