›› 2010, Vol. 31 ›› Issue (5): 1413-1419.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of deformation characteristics of rockfill under different environmental conditions

SUN Guo-liang, ZHANG Bing-yin, ZHANG Qi-guang, SUN Xun   

  1. 1. Department of Hydraulic and Hydropower Engineering, Tsinghua University, Beijing 100084, China; 2. State Key Laboratory of Hydroscience and Engineering, Beijing 100084, China
  • Received:2008-11-11 Online:2010-05-10 Published:2010-05-24

Abstract:

An experimental method to investigate the long-term mechanical characteristics of loaded rockfill under different environmental conditions of drying and wetting, cooling and heating is presented. A series of tests were performed by using a newly developed weathering test apparatus to study the long-term degradation strain mechanism of argillaceous siltstone rockfill under different environmental conditions including drying and wetting cycles, cooling and heating cycles and the coupled wetting-cooling and drying-heating cycles. The test results show that the drying and wetting cycles and the coupled wetting-cooling and drying-heating cycles can induce remarkable additional strains of loaded rockfill, including wetting strain, wet-swelling and dry-shrinking strain and rockfill particle degradation strain. It is shown that the changes of environmental factors can cause degradation of rockfill particle; and the degradation strain of rockfill is a key portion of the long-term strain of high rockfill dam.

Key words: weathering, rockfill, drying and wetting cycle, cooling and heating cycle

CLC Number: 

  • TU 473
[1] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[2] ZHOU Meng-jia, WEN Yan-feng, DENG Gang, WANG Yun-jia, SONG Er-xiang, . Three-dimensional discrete element simulation of random breaking strength and size effect in single particle splitting test of rockfill [J]. Rock and Soil Mechanics, 2019, 40(S1): 503-510.
[3] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[4] DING Yan-hui, ZHANG Bing-yin, QIAN Xiao-xiang, YIN Yin, SUN Xun, . Experimental study of the characteristics of wetting deformation of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2975-2981.
[5] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[6] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[7] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[8] SHENG Yun-feng, CHEN Yuan, ZHOU Wei, MA Gang, CHANG Xiao-lin, . Dynamic response analysis of rockfill dam based on modified dynamic shear modulus model [J]. Rock and Soil Mechanics, 2018, 39(S2): 405-414.
[9] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
[10] ZHOU Xiong-xiong, CHI Shi-chun, JIA Yu-feng, XIE Yun-fei, . Detailed simulation method for filling process of high earth and rockfill dams [J]. Rock and Soil Mechanics, 2018, 39(S2): 443-450.
[11] WEI Kuang-min , CHEN Sheng-shui, LI Guo-ying, WU Jun-jie, . Influence of contact effect between dam body and dam foundation on behaviours of high concrete faced rockfill dam built in steep valleys [J]. , 2018, 39(9): 3415-3424.
[12] LI Yang, SHE Cheng-xue. Numerical simulation of effect of size on crushing strength of rockfill grains using particle flow code [J]. , 2018, 39(8): 2951-2959.
[13] YANG Gui, SUN Xin, WANG Yang-yang, . Tests on resilient behaviour of polymer rockfill materials [J]. , 2018, 39(5): 1669-1674.
[14] NIU Geng, SUN De-an, WEI Chang-fu, YAN Rong-tao,. Determination of water retention curve of fully weathered mudstone using its pore-size distribution [J]. , 2018, 39(4): 1337-1345.
[15] LIU Guo-ming, CHEN Ze-qin, WU Le-hai. Improvement of Gudehus-Bauer hypoplastic constitutive model for rockfill materials and the determination of model parameters [J]. , 2018, 39(3): 823-830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Yun-ping, WANG Si-jing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading[J]. , 2010, 31(4): 1030 -1034 .
[2] CHEN Yu,ZHANG Qing-he,ZHU Ji-wen,YAO Hai-ming. Coupled fluid-mechanical analysis of DOT shield tunnel construction beneath adjacent existing underpass[J]. , 2010, 31(6): 1950 -1955 .
[3] GU Shao-fu, LIU Yang-shao, LIU Shi-shun. Study of application of Asaoka method to settlement prediction[J]. , 2010, 31(7): 2238 -2240 .
[4] Lü Xi-lin,HUANG Mao-song,QIAN Jian-gu. Strength parameter of sands under true triaxial test[J]. , 2009, 30(4): 981 -984 .
[5] SHAN Ren-liang, HUANG Bao-long, LI Guang-jing. Comprehensive evaluation model based on gray correlative analysis and its application to selecting blasting scheme[J]. , 2009, 30(S1): 206 -210 .
[6] SUN De-an,MENG De-lin,SUN Wen-jing,LIU Yue-miao. Soil-water characteristic curves of two bentonites[J]. , 2011, 32(4): 973 -0978 .
[7] LU Tao, WANG Kong-wei, LI Jian-lin. Study of failure mode of sandstone under reservoir water pressures[J]. , 2011, 32(S1): 413 -0418 .
[8] CHEN Xin-ze. Interaction mechanism and reinforcement effects of prestressed anchorage piles based on FLAC 3D[J]. , 2009, 30(S2): 499 -504 .
[9] WANG Bo , HE Chuan , WU De-xing , GENG Ping. Inverse analysis of in-situ stress field of Cangling super-long highway tunnel[J]. , 2012, 33(2): 628 -634 .
[10] ZHU Yuan-guang,LIU Quan-sheng,ZHANG Cheng-yuan,SHI Kai. Nonlinear viscoelastic creep property of rock with time-temperature equivalence effect[J]. , 2012, 33(8): 2303 -2309 .