›› 2010, Vol. 31 ›› Issue (S1): 284-292.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Comparative analysis of cooling effect of crushed rock embankment along the Qinghai-Tibet Railway

MU Yan-hu,MA Wei,SUN Zhi-zhong,LIU Yong-zhiMU Yan-hu,MA Wei,SUN Zhi-zhong,LIU Yong-zhi   

  1. State Key Laboratory of Frozen Soils Engineering, Cold and Arid Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2010-04-28 Online:2010-08-10 Published:2010-09-09

Abstract:

Based on the in-situ monitoring data of ground temperature along the Qinghai-Tibet Railway, the cooling effects of crushed rock embankments (crushed rock revetment embankment and U-shaped crushed rock embankment) positioned in different permafrost regions with diverse mean annual ground temperatures were analyzed. The comparative analysis showed that either in basically stable low temperature permafrost regions (mean annual ground temperature -2.0 ℃≤TCP<-1.0 ℃) or in badly unstable warm permafrost regions (mean annual ground temperature TCP>-0.5℃), the crushed rock embankment had uplift the permafrost table beneath the embankment effectively; but the two kinds of crushed rock embankment performed different in providing cooling effect. The latter produced more cooling effects than the former; it could keep the deep permafrost thermal stable while raising the permafrost table and cooling the shallow permafrost. Whereas the rising of permafrost table beneath the crushed rock revetment somewhat consumed the cold energy of deep permafrost and consequently made the deep permafrost warmer. The analysis also indicated that the lower the mean annual ground temperature, the stronger the cooling effect of air-convection crushed rock embankment. It should be noted that in badly unstable warm permafrost regions, the crushed rock revetment hadn’t produced enough cooling effect and the underlying deep permafrost warmed considerably; so some enhancement measures are needed to ensure the long-term stability of the embankment.

Key words: crushed rock embankment, U-shaped crushed rock embankment, cooling effect, permafrost, the Qinghai-Tiber Railway

CLC Number: 

  • TU 443
[1] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[2] WANG Hong-lei, SUN Zhi-zhong, LIU Yong-zhi, WU Gui-long, . The monitoring analysis of the thermal-mechanical response on embankment with thawed interlayer along Qinghai-Tibet Railway [J]. Rock and Soil Mechanics, 2019, 40(7): 2815-2824.
[3] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, HOU Yan-dong, WANG Bin, GUO Zong-yun , WEI Hao-tian, . Mechanism of climate warming on thermal-moisture dynamics of active permafrost layer considering effect of rainfall [J]. Rock and Soil Mechanics, 2019, 40(5): 1983-1993.
[4] GAO Qiang, WEN Zhi, WANG Da-yan, NIU Fu-jun, XIE Yan-li, GOU Ting-tao,. Study on the instability process of slopes in permafrost regions by direct shear test of freezing-thawing interface [J]. , 2018, 39(8): 2814-2822.
[5] TIAN Ya-hu, HU Kang-qiong, TAI Bo-wen, SHEN Yu-peng, WANG Teng-fei, . Influence of different factors on horizontal frost heaving force against canal [J]. , 2018, 39(2): 553-560.
[6] ZHANG Kai-jian, SUN Hong, NIU Fu-jun, GE Xiu-run,. Seismic response of low-angle soil slope in permafrost regions [J]. , 2017, 38(12): 3469-3475.
[7] LIU Ming-hao, NIU Fu-jun, LIN Zhan-ju, LUO Jing. Long-term cooling effect and deformation characteristics of a U-shaped crushed rock embankment in warm permafrost regions [J]. , 2017, 38(11): 3304-3310.
[8] GUO Chun-xiang, WU Ya-ping, JIANG Dai-jun. Analysis of response of pile vertical bearing capacity to short-term climatic anomaly in permafrost regions [J]. , 2015, 36(S2): 377-382.
[9] YU De-zhong , CHENG Pei-feng , JI Cheng , CUI Zhi-gang,. Experimental study of bearing capacity of island permafrost pile foundation before and after refreezing in low altitude and high latitude area [J]. , 2015, 36(S2): 478-484.
[10] LI Guo-yu , MA Wei , WANG Xue-li , JIN Hui-jun , WANG Yong-ping , ZHAO Ying-bo , CAI Yong-jun , ZHANG Peng,. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline [J]. , 2015, 36(10): 2963-2973.
[11] LIU Jian-jun,XIE Jun. Numerical simulation of thermo-hydro-mechanical coupling around underground pipelines in patchy permafrost region [J]. , 2013, 34(S1): 444-450.
[12] SUN Zhi-zhong ,MA Wei ,DANG Hai-ming ,YUN Han-bo ,WU Gui-long . Characteristics and causes of embankment deformation for Qinghai-Tibet Railway in permafrost regions [J]. , 2013, 34(9): 2667-2671.
[13] WEN Bin , WU Qing-bai , JIANG Guan-li , ZHANG Peng . Back analysis of frozen soil thermal properties based on simulated annealing optimization algorithm [J]. , 2013, 34(8): 2401-2408.
[14] XIA Cai-chu ,HUANG Ji-hui ,BIAN Yue-wei ,TANG Zhi-cheng . Elastoplastic analysis of surrounding rock of permafrost tunnel with thawing effect and its interaction with support [J]. , 2013, 34(7): 1987-1994.
[15] HUANG Jun-jie ,SU Qian ,ZHONG Biao ,BAI Hao ,WANG Wu-bin . Deformation failure characteristics and influential factors of subgrade upon slope in permafrost area [J]. , 2013, 34(3): 703-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[10] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .