›› 2015, Vol. 36 ›› Issue (S2): 377-382.doi: 10.16285/j.rsm.2015.S2.052

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of response of pile vertical bearing capacity to short-term climatic anomaly in permafrost regions

GUO Chun-xiang, WU Ya-ping, JIANG Dai-jun   

  1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • Received:2015-03-31 Online:2015-08-31 Published:2018-06-14

Abstract: Significant climatic warming is in progress and causes degradation of permafrost and stability of superstructures. Especially under the more complex climate, frequently ultra weather and climate, the progress of bearing capacity in frozen ground is becoming more complex. taking a single pile in representative humid permafrost in Qinghai-Tibet plateau for example, considering the pile exposed in the air absorbs solar radiation, permafrost phase-change, natural air convection and global warming, the sensitivity of pile vertical bearing capacity to short-term climatic anomaly in permafrost regions is analyzed using finite element method. The numerical results show that the pile bearing capacity become lower under the short-term warmer climate because the decrease of adfreeze strength between pile and frozen ground, and no change of adfreeze area. The decrease influence is not fade away in the next years. The warmer climatic make the more decrease of bearing capacity. Under the colder climatic alternates with warmer climate, the pile bearing capacity is changed with outer air temperature, and regain normal after the climaticanomaly.

Key words: permafrost, pile foundation, beating capacity, climatic anomaly, response

CLC Number: 

  • TU 473
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[3] JIANG Zhong-ming, LI Peng, ZHAO Hai-bin, FENG Shu-rong, TANG Dong, . Experimental study on performance of shallow rock cavern for compressed air energy storage [J]. Rock and Soil Mechanics, 2020, 41(1): 235-241.
[4] WENG Yong-hong, ZHANG Lian, XU Tang-jin, HUANG Shu-ling, DING Xiu-li, . Safety evaluation on interaction of new plug structure and surrounding rock mass under high water head [J]. Rock and Soil Mechanics, 2020, 41(1): 242-252.
[5] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[6] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[7] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[8] ZHANG Zhi-guo, LI Sheng-nan, ZHANG Cheng-ping, WANG Zhi-wei, . Analysis of stratum deformation and lining response induced by shield construction considering influences of underground water level rise and fall [J]. Rock and Soil Mechanics, 2019, 40(S1): 281-296.
[9] ZHENG Shuai, JIANG An-nan, ZHANG Feng-rui, ZHANG Yong, SHEN Fa-yi, JIANG Xu-dong, . Dynamic classification method of surrounding rock and its engineering application based on machine learning and reliability algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 308-318.
[10] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[11] XU Zi-gang, DU Xiu-li, XU Cheng-shun, HAN Run-bo, QIAO Lei. Research on generalized response displacement method for seismic analysis of underground structures with complex sections [J]. Rock and Soil Mechanics, 2019, 40(8): 3247-3254.
[12] FANG Jin-cheng, KONG Gang-qiang, CHEN Bin, CHE Ping, PENG Huai-feng, LÜ Zhi-xiang, . Field test on thermo-mechanical properties of pile group influenced by concrete hydration [J]. Rock and Soil Mechanics, 2019, 40(8): 2997-3003.
[13] HAN Jun-yan, ZHONG Zi-lan, LI Li-yun, ZHAO Mi, WAN Ning-tan, DU Xiu-li. Nonlinear seismic response of free-field soil under longitudinal non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(7): 2581-2592.
[14] ZHU Ming-xing, DAI Guo-liang, GONG Wei-ming, WAN Zhi-hui, LU Hong-qian, . Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607.
[15] WANG Hong-lei, SUN Zhi-zhong, LIU Yong-zhi, WU Gui-long, . The monitoring analysis of the thermal-mechanical response on embankment with thawed interlayer along Qinghai-Tibet Railway [J]. Rock and Soil Mechanics, 2019, 40(7): 2815-2824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Huo-yao,SHI Jian-yong. Test research on soil compacting effect of full scale jacked-in pile in saturated soft clay[J]. , 2009, 30(11): 3291 -3296 .
[2] DONG Yun ,HE Wei-zhong, SUN Wei. Analysis of stability & deformation and destruction mode of road embankment built aside dam[J]. , 2010, 31(8): 2471 -2478 .
[3] YE Bin, YE Guan-lin , NAGAYA Junichi. Dynamic numerical simulation of a new quay wall structure with geosynthetics[J]. , 2010, 31(S2): 442 -446 .
[4] GAO Yan-bin, CUI Yu-jun. Use of microclimate energy analysis method in geotechnical problem analysis[J]. , 2009, 30(2): 433 -439 .
[5] PANG Da-peng, CHEN Jian-ping, WANG Dan-wei. Application of fractal description of rock mass joint and cracks network to advanced geological forecast of tunnels[J]. , 2009, 30(5): 1415 -1420 .
[6] YANG Rong-wei, CHENG Xiao-hui. Direct shear experiments of photoelastic granular materials[J]. , 2009, 30(S1): 103 -109 .
[7] SUN Bo,ZHOU Zhong-hua,ZHANG Hu-yuan,ZHANG Yong-xia,ZHENG Long. Characteristics and prediction model of surface temperature for rammed earthen architecture ruins[J]. , 2011, 32(3): 867 -871 .
[8] WANG Song-he, LUO Ya-sheng. Research on creep characteristics of loess under complex stress[J]. , 2009, 30(S2): 43 -47 .
[9] LIN Ping , YE Guan-lin , CHEN Nan , WANG Jian-hua , HASHIMOTO Tadashi. In-situ monitoring method for frozen soil pressure during cross passage construction by freezing method[J]. , 2011, 32(8): 2555 -2560 .
[10] JIA Shan-po , WU Guo-jun , CHEN Wei-zhong. Application of finite element inverse model based on improved particle swarm optimization and mixed penalty function[J]. , 2011, 32(S2): 598 -603 .