›› 2010, Vol. 31 ›› Issue (9): 2781-2785.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study of immersion strength and residual strength of lime-loess

MI Hai-zhen1,WANG Hao 1, 2,GAO Chun1,ZHU Hao-wen1   

  1. 1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; 2. Yangtze University College of Technology & Engineering, Jingzhou, Hubei 434020, China
  • Received:2009-04-15 Online:2010-09-10 Published:2010-09-16

Abstract:

The immersion strength and residual strength of lime-loess is an operation frequently encountered in subsequent projects, reconstruction projects and analyzing the engineering accident. So there will be an important engineering significance if we work for it. The conventional triaxial test was conducted with forty samples of loess-lime of Lanzhou in China, the immersion strength and residual strength of lime-loess were discussed specially. From these tests results it was found that the residual strength ? R with the confining pressure? 3 appears a linear relationship. This law is similar to rock, because the lime-loess was broken into masses in the period of the residual strength, and the friction effect on the crack face was so similar to the rock.; the strength will decrease after the lime-loess was immersed; but the strength will appear up after a few times immersion; and the strength will remain on a constant volume which is not more than its original strength. In addition,we can't define it brittle materials simply. It is found that the lime'-loess fragility is depended on confining pressure and water content; the loess-lime' fragility will be more evident when the confining pressure become more high. It will be fragility when the water content decrease to a certain value.

Key words: lime-loess, static triaxial test, wet-dry cycling test, residual strength, loess, stress-strain curve

CLC Number: 

  • TU 443
[1] FANG Jin-jin, FENG Yi-xin, WANG Li-ping, YU Yong-qiang, . Effective stress yielding behavior of unsaturated loess under true triaxial conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 492-500.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] HE Peng-fei, MA Wei, MU Yan-hu, HUANG Yong-ting, DONG Jian-hua, . Experimental analysis of interfacial shear behavior of loess-mortar block and construction of constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 82-90.
[4] LIU Hua, ZHANG Shuo-cheng, NIU Fu-jun, SHAO Zhu-shan, NIU Ze-lin, LU Jie, . Experimental study on one-dimensional compression characteristics of Q3 loess contaminated by acid or alkali solutions [J]. Rock and Soil Mechanics, 2019, 40(S1): 210-216.
[5] XIE Hui-hui, XU Zhen-hao, LIU Qing-bing, HU Gui-yang, . Evolution of peak strength and residual strength of weak expansive soil under drying-wetting cycle paths [J]. Rock and Soil Mechanics, 2019, 40(S1): 245-252.
[6] ZHU Yan-peng, DU Xiao-qi, YANG Xiao-hui, LI Hui-jun, . Research on utility tunnel foundation treated by compaction piles and post-work immersion test in self-weight collapsible loess area with large thickness [J]. Rock and Soil Mechanics, 2019, 40(8): 2914-2924.
[7] FENG Jun, WANG Yang, WU Hong-gang, LAI Bing, XIE Xian-dang, . Field pullout tests of basalt fiber-reinforced polymer ground anchor [J]. Rock and Soil Mechanics, 2019, 40(7): 2563-2573.
[8] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[9] WANG Tie-hang, JIN Xin, LUO Yang, ZHANG Song-lin. A method for evaluation of loess collapse potential of unloading [J]. Rock and Soil Mechanics, 2019, 40(4): 1281-1290.
[10] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[11] CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, . Relationship between saturation degree and B value for loess [J]. Rock and Soil Mechanics, 2019, 40(3): 834-842.
[12] ZHANG Yu-wei, WENG Xiao-lin, SONG Zhan-ping, XIE Yong-li, . A modified Cam-clay model for structural and anisotropic loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1030-1038.
[13] WANG Li-qin, SHAO Sheng-jun, WANG Shuai, ZHAO Cong, SHI Peng-xin, ZHOU Biao, . Compression curve characteristic of undisturbed loess [J]. Rock and Soil Mechanics, 2019, 40(3): 1076-1084.
[14] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng, . Large-scale shaking table experiment of loess slope supported by frame anchors [J]. Rock and Soil Mechanics, 2019, 40(11): 4240-4248.
[15] WANG Dao-yuan, YUAN Jin-xiu, ZHU Yong-quan, LIU Jia, WANG Hong-fan, . Model test study of deformation characteristics and reasonable reserved deformation of shallow-buried loess tunnel with hard-flow plastic [J]. Rock and Soil Mechanics, 2019, 40(10): 3813-3822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Cheng, ZHENG Ying-ren, CHEN Xin-ying, TANG Xiao-song. Research on composite support pattern of soil nails and prestressed anchors in deep foundation pits[J]. , 2009, 30(12): 3793 -3796 .
[2] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[3] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[4] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[5] GAO Zhi-hua,LAI Yuan-ming,XIONG Er-gang,LI Bo. Experimental study of characteristics of warm and ice-rich frozen clay under cyclic loading[J]. , 2010, 31(6): 1744 -1751 .
[6] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[7] SHEN Yin-bin, ZHU Da-yong, WANG Peng-cheng, YAO Hua-yan. Critical slip field of slopes based on numerical stress field[J]. , 2010, 31(S1): 419 -423 .
[8] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[9] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[10] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .