›› 2010, Vol. 31 ›› Issue (9): 2772-2779.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of tensile force in reinforced cushion and pressure at bottom of soft soil foundation embankment based on centrifugal model tests

ZHANG Liang,LUO Qiang,CHEN Hu,ZHANG Min-jing,PEI Fu-ying   

  1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2009-08-14 Online:2010-09-10 Published:2010-09-16

Abstract:

Three groups of soft soil foundation embankment centrifugal model tests, separately with different types of cushion were designed to master the effect of reinforced cushion on the pressure at the bottom of embankment and the tensile force in reinforced cushion. Test results show as follows. (1) With the enhancement of reinforced cushion’s structural performance, the pressure at the center of embankment bottom decreases gradually and the distribution of the pressure at the bottom of embankment changes from convex curve which is large in the middle section but small at the two ends to concave curve which is small in the middle section and large at the two ends. (2) With the reduce of reinforced cushion’s structural performance, embankment changes from quiescent stable state to active limit state. (3) With the increase of embankment load, foundation changes from elastic state to elastoplastic state and up to plastic state. the distribution of tensile force in reinforced cushion changes from the shape of saddle with two peak to the shape of parabola with one peak.

Key words: soft soil foundation embankment, centrifugal model test, pressure at bottom of embankment, tensile force in reinforced cushion

CLC Number: 

  • TU 472
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[3] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[4] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[5] HU Yong, LI Yun-an, LI Bo, LI Cong-an, XIAO Jie-fu,. Centrifugal model tests and numerical simulation of three-dimensional space effect of deep and large foundation pit under the confined water level fluctuation [J]. , 2018, 39(6): 1999-2007.
[6] LI Bo, XIAO Xian-bo, XU Tang-jin, ZHOU Song,. Experiment on connecting form between cutoff wall and composite geomembrane of cofferdam with existing wall mud [J]. , 2018, 39(5): 1761-1766.
[7] ZHENG Tong , LIU Hong-shuai, YUAN Xiao-ming, TU Jie-wen, TANG Ai-ping, QI Wen-hao,. Full process of static and dynamic performances of cantilever anti-slide pile [J]. , 2018, 39(3): 854-862.
[8] MIAO Fa-sheng, WU Yi-ping, XIE Yuan-hua, LI Yao-nan, LI Lin-wei. Centrifugal test on retrogressive landslide influenced by rising and falling reservoir water level [J]. , 2018, 39(2): 605-613.
[9] LI Jing-pei, CAO Xiao-bing, LI Lin, GONG Wei-bing, . Centrifugal model test and mechanism study of jacked pile and CPTU penetration [J]. Rock and Soil Mechanics, 2018, 39(12): 4305-4311.
[10] LUO Xian-qi, BI Jin-feng. Principle and engineering application of geomechanics magnetic model test [J]. , 2018, 39(1): 367-374.
[11] ZHANG Ga, JIN Hong-liu. Failure behavior of soil nailing-reinforced slopes under drawdown conditions [J]. , 2016, 37(S2): 137-143.
[12] ZHU Bin, FENG Ling-yun, CHAI Neng-bin, GUO Xiao-qing, . Centrifugal model test and numerical analysis of deformation and stability of seawall on soft clay [J]. , 2016, 37(11): 3317-3323.
[13] ZHANG Fei, LI Jing-pei , SUN Chang-an, SHEN Guang-jun, LI Fei,. Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay [J]. , 2016, 37(10): 2825-2832.
[14] WANG Wei-zao , XU Qiang , ZHENG Guang , LI Jia-yu , LUO Bo-yu,. Centrifugal model tests on sliding failure of gentle debris slope under rainfall [J]. , 2016, 37(1): 87-95.
[15] FU Chang-jing , LI Guo-ying , MI Zhan-kuan , ZHAO Tian-long,. A simplified analytical method for calculating the earth pressure of the unloading-type sheet pile wharf [J]. , 2015, 36(8): 2426-2432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] ZHANG Bo, Li Shu-cai, YANG Xue-ying, WANG Xi-ping. Research on seismic wave input with three-dimensional viscoelastic artificial boundary[J]. , 2009, 30(3): 774 -778 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[10] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .