›› 2010, Vol. 31 ›› Issue (9): 2861-2868.

• Geotechnical Engineering • Previous Articles     Next Articles

Analysis of stress and deformation of Jinping I High Arch Dam after foundation reinforcement

HU Zhu-xiu1,ZHANG Jian-hai1,ZHOU Zhong2,RAO Hong-ling2   

  1. 1. State Key Laboratory of Hydraulics and Mountainous River Engineering, School of Water Resources and Hydro-power, Sichuan University, Chengdu 610065, China; 2. Chengdu Hydroelectric Investigation and Design Institute, CHECC, Chengdu 610072, China
  • Received:2009-05-27 Online:2010-09-10 Published:2010-09-16

Abstract:

The complex geological conditions in the site of Jinping I Arch Dam made its reinforcement measures a huge project ,which mainly includes the concrete seating replacement ,shearing resistant adit, with the fault f13, f14 in the right bank and fault f5 、f8 and lamprophyre veins in the left bank treated with concrete lattice replacement. By employing nonlinear finite element analysis, this article gives computing results and detailed discusses on the dam stress and deformation characteristics of Jinping I Arch Dam under several operation conditions after the dam foundation reinforced. The dam stress distribution and deformation are also discussed by way of strength reserve method and the water gravity overload method. The results show that during the inpounding period, the overall characteristics of deformation and stress distribution of the dam have been significantly improved; the tensile stresses in the heel of dam are decreased after reinforcement; and the dam has enough global stability storage to completely meet the design requirements. Thus the necessity of the concrete seating replacement is afirmed.

Key words: finite element method, high arch dam, dam stress and deformation, Jinping I Hydropower Staion

CLC Number: 

  • TB 115
[1] SUN Rui, YANG Feng, YANG Jun-sheng, ZHAO Yi-ding, ZHENG Xiang-cou, LUO Jing-jing, YAO Jie, . Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element [J]. Rock and Soil Mechanics, 2020, 41(2): 687-694.
[2] ZHANG Hai-ting, YANG Lin-qing, GUO Fang, . Solution and analysis of dynamic response for rigid buried pipe in multi-layered soil based on SBFEM [J]. Rock and Soil Mechanics, 2019, 40(7): 2713-2722.
[3] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[4] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[5] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[6] WANG Dong-yong, CHEN Xi, YU Yu-zhen, LÜ Yan-nan, . Ultimate bearing capacity analysis of shallow strip footing based on second- order cone programming optimized incremental loading finite element method [J]. Rock and Soil Mechanics, 2019, 40(12): 4890-4896.
[7] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[8] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[9] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[10] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
[11] LIU Zhong-yu, ZHANG Jia-chao, ZHENG Zhan-lei, GUAN Cong. Finite element analysis of two-dimensional Biot’s consolidation with Hansbo’s flow [J]. Rock and Soil Mechanics, 2018, 39(12): 4617-4626.
[12] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
[13] TU Yi-liang, LIU Xin-rong, ZHONG Zu-liang, DU Li-bing, WANG Peng, . The unity of three types of slope failure criteria [J]. , 2018, 39(1): 173-180.
[14] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
[15] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAN Xian-jun, CHEN Wei-zhong, YANG Jian-ping, YANG Chun-he. Study of THM-damage coupling model of gas storage in salt rock with interlayer[J]. , 2009, 30(12): 3633 -3641 .
[2] WEI Xing,WANG Gang,YU Zhi-ling. FEM of traffic-load-induced settlement of road on soft clay[J]. , 2010, 31(6): 2011 -2015 .
[3] WEN Shi-yi, LI Jing , SU Xia , YAO Xiong. Studies of mesomechanical structure characters of surrounding rock failure under complex stress state[J]. , 2010, 31(8): 2399 -2406 .
[4] MAO Ning,ZHANG Yao-liang. Typical examples of simple methods to find empirical formulas[J]. , 2010, 31(9): 2978 -2982 .
[5] LIU Jie,LI Jian-lin,QU Jian-jun,Cheng Xing,LI Jian-wu,LUO Shi-wei. Multiple factors analysis of influence of developing horizontal displacement at Dagangshan dam abutment slope based on unloading rock mass mechanics[J]. , 2010, 31(11): 3619 -3626 .
[6] LI Wei-hua, ZHAO Cheng-gang, DU Nan-xin. Analysis of effects of saturated soft interlayer on seismic responses of metro station[J]. , 2010, 31(12): 3958 -3963 .
[7] HAN Xian-min. Study of construction technology and mechanical effect of Guanjiao tunnel in shallow-buried sandy stratum in Xining-Golmud 2nd line[J]. , 2010, 31(S2): 297 -302 .
[8] JIANG Zheng-wei, PENG Jian-bing, WANG Qi-yao. Adverse geological problems and countermeasure of Xi’an Metro Line 3[J]. , 2010, 31(S2): 317 -321 .
[9] LIU Yong-hai, ZHU Xiang-rong, CHANG Lin-yue. Determining preconsolidation pressure by mathematic analysis based on casagrande method[J]. , 2009, 30(1): 211 -214 .
[10] LI Xing-gao, LIU Wei-ning. Discussion on computing water and earth pressures on retaining wall separately[J]. , 2009, 30(2): 419 -424 .