›› 2010, Vol. 31 ›› Issue (11): 3516-3524.

• Geotechnical Engineering • Previous Articles     Next Articles

Test study and numerical analysis of seismic response of pile foundation of bridge at permafrost regions along Qinghai-Tibet Railroad

WU Zhi-jian 1, 3,CHE Ai-lan2,GHEN Tuo1,WANG Ping1   

  1. 1. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China; 2. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China; 3. Lanzhou Base of Institute of Earthquake Prediction, China Earthquake Administration, Lanzhou 730000, China
  • Received:2009-12-08 Online:2010-11-10 Published:2010-11-24

Abstract:

Based on shaking table tests for scale model of pile foundation, which belongs to bridges at the unstable permafrost regions of high earth temperatures along the Qinghai-Tibet Railroad, on condition that the soil temperature around pile was below 0 ℃, it discovered that temperature increased at the spot of soil between piles and the interface of the piles and soil under seismic dynamic motions. Moreover, under the conditions of natural state and soil temperature increase, the characteristics of seismic response of pile foundation of the Qingshui River Bridge were analyzed by dynamic finite element analysis. It indicated that seismic response of the permafrost layer and pile foundation, under seismic motions, was obviously sensitive to the increase in temperature, while earth temperature above -1 ℃. Under artificial wave with exceedance probability of 2% in 50 years loading, the slippage and escape, between pile foundation and soil layer around, were enlarged due to relative displacement of pile foundation. Especially, on condition that temperature above -1 ℃, the slippage was so obvious that it influenced the stability of whole pile foundation.

Key words: permafrost, pile foundation, shaking table test, dynamic finite element analysis, seismic response

CLC Number: 

  • TU 435
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[3] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[4] WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region [J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
[5] WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, TANG Zhao-guang, WANG Hai, DUAN Xue-feng. Reliability analysis of acceleration integral displacement method based on shaking table tests [J]. Rock and Soil Mechanics, 2019, 40(S1): 565-573.
[6] FANG Jin-cheng, KONG Gang-qiang, CHEN Bin, CHE Ping, PENG Huai-feng, LÜ Zhi-xiang, . Field test on thermo-mechanical properties of pile group influenced by concrete hydration [J]. Rock and Soil Mechanics, 2019, 40(8): 2997-3003.
[7] LIU Xin-rong, DENG Zhi-yun, LIU Yong-quan, LIU SHU-lin, LU Yu-ming, . Study of cumulative damage and failure mode of horizontal layered rock slope subjected to seismic loads [J]. Rock and Soil Mechanics, 2019, 40(7): 2507-2516.
[8] HAN Jun-yan, ZHONG Zi-lan, LI Li-yun, ZHAO Mi, WAN Ning-tan, DU Xiu-li. Nonlinear seismic response of free-field soil under longitudinal non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(7): 2581-2592.
[9] ZHU Ming-xing, DAI Guo-liang, GONG Wei-ming, WAN Zhi-hui, LU Hong-qian, . Mechanism and calculation models of resisting moment caused by shaft resistance for laterally loaded pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2593-2607.
[10] WANG Hong-lei, SUN Zhi-zhong, LIU Yong-zhi, WU Gui-long, . The monitoring analysis of the thermal-mechanical response on embankment with thawed interlayer along Qinghai-Tibet Railway [J]. Rock and Soil Mechanics, 2019, 40(7): 2815-2824.
[11] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[12] HAN Jun-yan, HOU Ben-wei, ZHONG Zi-lan, ZHAO Mi, LI Li-yun, DU Xiu-li. Research on shaking table test scheme of buried pipeline under multi-point non-uniform seismic excitations [J]. Rock and Soil Mechanics, 2019, 40(6): 2127-2139.
[13] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[14] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[15] ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, HOU Yan-dong, WANG Bin, GUO Zong-yun , WEI Hao-tian, . Mechanism of climate warming on thermal-moisture dynamics of active permafrost layer considering effect of rainfall [J]. Rock and Soil Mechanics, 2019, 40(5): 1983-1993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LI Yuan-heng,CHEN Guo-liang,LIU Xiu-guo,SHANG Jian-ga. The topology-oriented method of building 3D geological block model based on primary TIN[J]. , 2010, 31(6): 1902 -1906 .
[3] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[4] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[5] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[6] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[7] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[8] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] SONG Yi-min , JIANG Yao-dong , MA Shao-peng , YANG Xiao-bin , ZHAO Tong-bin . Evolution of deformation fields and energy in whole process of rock failure[J]. , 2012, 33(5): 1352 -1356 .