›› 2011, Vol. 32 ›› Issue (2): 553-558.

• Numerical Analysis • Previous Articles     Next Articles

One-dimensional consolidation analysis considering exponential flow law and time-depending loading

LI Chuan-xun 1, 2, XIE Kang-he 2, LU Meng-meng 3, 4, WANG Kun2   

  1. 1. Department of Civil Engineering Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. MOE Key Laboratory of Soft Soils and Geoenviromental engineering, Zhejiang University, Hangzhou 310027, China; 3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China; 4. School of Architecture & Civil Engineering, China University of Mining & Technology, Xuzhou, Jiangsu 221008, China
  • Received:2010-02-04 Online:2011-02-10 Published:2011-02-16

Abstract:

The differential equation governing one-dimensional consolidation was modified to consider exponential flow law and time-depending load. Finite difference solution was acquired by Crank-Nicolson difference scheme which was relatively stability. The reliability of difference programming was verified by comparing the results with analytic solutions. The results show that, if the exponent is greater than 1, the rate of consolidation is faster than the case of Darcy’s flow at short time factor, slower than the case of Darcy’s flow at long time factor. On the contrary, if the exponent is less than 1, the rate of consolidation is slower than the case of Darcy’s flow at short time factor, faster than the case of Darcy’s flow at long time factor. If the exponent is greater than 1, the less the load, the slower the consolidation rate for the same soil layer. At the case of exponential flow law, the classical similitude between consolidation of laboratory samples and that of field layers is not satisfied. The faster the loading rate, the faster the consolidation rate.

Key words: one-dimensional consolidation, finite difference method, exponential flow law, time-depending load

CLC Number: 

  • U 416.1
[1] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[2] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[3] CHEN Dong, WANG En-yuan, LI Nan, . Study on wave field characteristics of different media models of coal and rock [J]. Rock and Soil Mechanics, 2019, 40(S1): 449-458.
[4] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[5] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[6] TONG Li-hong, WANG Jue, GUO Sheng-gen, ZHU Huai-long, XU Chang-jie, . One-dimensional consolidation characteristics of viscoelastic foundation with continuous drainage boundary under time- dependent loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1862-1868.
[7] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
[8] ZHOU Ya-dong, DENG An, LU Qun, . A one-dimensional consolidation model considering large strain for unsaturated soil [J]. , 2018, 39(5): 1675-1682.
[9] LI Chuan-xun, DONG Xing-quan, JIN Dan-dan, WANG Yu-lin,. Large-strain nonlinear consolidation of double-layered soft clay with threshold gradient [J]. , 2018, 39(5): 1877-1884.
[10] WANG Lei, LI Lin-zhong, XU Yong-fu, XIA Xiao-he, SUN De-an,. Analysis of one-dimensional consolidation of fractional viscoelastic saturated soils with semi-permeable boundary [J]. , 2018, 39(11): 4142-4148.
[11] LI Chuan-xun , DONG Xing-quan , JIN Dan-dan , XIE Kang-he,. Nonlinear large-strain consolidation analysis of soft clay considering threshold hydraulic gradient [J]. , 2017, 38(2): 377-384.
[12] LIN Cheng-fu, LEI Guo-hui, . Responses of negative excess pore water pressure under unloading in one-dimensional swelling tests [J]. , 2017, 38(12): 3613-3618.
[13] XIE Yi, LI Pei-chao, WANG Lei, SUN De-an,. Semi-analytical solution for one-dimensional consolidation of viscoelastic saturated soil with fractional order derivative [J]. , 2017, 38(11): 3240-3246.
[14] XIE Xin-yu, HAN Dong-dong, HUANG Li , WANG Zhong-jin, LIU Kai-fu,. Calculation of ultimate bearing capacity factor Nγ for rough strip footings [J]. , 2016, 37(S1): 209-214.
[15] DONG Xing-quan, LI Chuan-xun, CHEN Meng-meng, ZHANG Jun, XIE Kang-he,. Analysis of large-strain nonlinear consolidation of double-layer soft clay foundation with considering effect of non-Darcy’s flow [J]. , 2016, 37(8): 2321-2331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Qing,ZHAO Jun-hai,WEI Xue-ying. Investigation of rock resistant coefficient in rocks around tunnel based on unified strength theory[J]. , 2009, 30(11): 3393 -3398 .
[2] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[3] LI Jia-gui, CHEN Zheng-han, HUANG Xue-feng, LI Jia. In-site test on earth pressure and saturating collapse test for unsaturated loess Q3 on high slope[J]. , 2010, 31(2): 433 -440 .
[4] JIE Ying, TANG Xiao-wei , LUAN Mao-tian. Finite-element free Galerkin coupling method for sand liquefaction-induced deformation[J]. , 2010, 31(8): 2643 -2647 .
[5] HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing. Initiation process simulation of debris deposit based on particle flow code[J]. , 2010, 31(S1): 394 -397 .
[6] ZHANG Jian-xin, LIU Shuang-ju, ZHOU Jia-bin. Analysis of influence of foundation pits excavation unloading by top-down method on engineering structures[J]. , 2010, 31(S2): 218 -223 .
[7] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[8] LI Shu-cai,XU Bang-shu,DING Wan-tao,ZHANG Qing-song. Weighted function method for minimum rock cover thickness of subsea tunnel[J]. , 2009, 30(4): 989 -996 .
[9] XUE Yun-liang, LI Shu-lin, LIN Feng, XU Hong-bin. Study of damage constitutive model of SFRC considering effect of damage threshold[J]. , 2009, 30(7): 1987 -1992 .
[10] LI Guo-yu,YU Wen-bing,MA Wei,QI Ji-lin,JIN Hui-jun,SHENG Yu. Experimental study of characteristics of frost and salt heaves of saline highway foundation soils in seasonally frozen regions in Gansu Province[J]. , 2009, 30(8): 2276 -2280 .