Rock and Soil Mechanics ›› 2024, Vol. 45 ›› Issue (8): 2324-2337.doi: 10.16285/j.rsm.2023.1379

• Fundamental Theory and Experimental Research • Previous Articles     Next Articles

Difference of dynamic responses of soil-rock mixture slopes with different rock contents based on shaking table test

XIE Zhou-zhou1, ZHAO Lian-heng1, 2, 3, LI Liang1, HUANG Dong-liang1, ZHANG Zi-jian1, ZHOU Jing4   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. MOE Key Laboratory of Engineering Structures of Heavy Haul Railway, Central South University, Changsha, Hunan 410075, China; 3. Hunan Provincial Key Laboratory for Disaster Prevention and Mitigation of Rail Transit Engineering Structure, Central South University, Changsha, Hunan 410075, China; 4. State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, Guangdong 510640, China
  • Received:2023-09-13 Accepted:2024-01-04 Online:2024-08-10 Published:2024-08-12
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China(51878668, 52378512), the Hunan Province Science Fund for Distinguished Young Scholars (2021JJ10063) and the Chinese Scholarship Council (202106370143, 202406370243).

Abstract: To address the limited comprehension of the dynamic response characteristics of soil-rock mixture (SRM) slopes, three sets of large-scale shaking table model tests of SRM slope with different rock contents were designed and conducted based on the similarity principle. The differences in dynamic response of SRM slope with different rock contents were systematically compared and analyzed. The research results indicate that the acceleration response of SRM slopes under earthquake action conforms to the free surface effect, that is, the acceleration amplification effect of the slope is significantly stronger near the top of the slope than within the slope. However, the dynamic response of SRM slopes with different rock contents under sine wave excitation of different frequencies is significantly different, this is due to the differences in the dynamic properties of slope structures with different rock contents. Under seismic action, the dynamic earth pressure of SRM slopes with different rock contents increases continuously from the shallow surface to the interior of the slope, but due to the different degrees of deformation and damage of the slope body, the overall dynamic soil pressure response of slopes with different rock contents is different. Moreover, during the entire seismic wave grading loading process, the sudden changes in dynamic soil pressure at different parts of the slope can serve as the basis for dynamic failure of the slope. As the rock content rises, the overall deformation of the slope under seismic action decreases gradually. For instance, a slope with 20% rock content exhibits continuous sliding from shallow to deep layers, while slopes with 40% and 60% rock content have relatively small deformation. A slope with 40% rock content only experience sliding of surface rock and soil, and a slope with 60% rock content only experience peeling of shallow surface soil. This indicates that higher rock content reinforces the stability of the SRM slopes.

Key words: earthquake-induced landslide, shaking table test, slope engineering, soil-rock mixture, dynamic response

CLC Number: 

  • TU 42
[1] LIU Hong-shuai, YANG Jian-sheng, SONG Dong-song, SUN Qiang-qiang, . Centrifuge modeling on ground response of dry sand site under near-fault pulsed and non-pulsed ground motions [J]. Rock and Soil Mechanics, 2025, 46(5): 1429-1441.
[2] KE Wen-hai, YANG Wen-hai, LI Yuan, WU Lei, . Dynamic response of pile foundation in slope topography under SH wave [J]. Rock and Soil Mechanics, 2025, 46(5): 1545-1544.
[3] YANG Ming-hui, CAI Ming-hui, CHEN Bo, YANG Han, . A method for calculating horizontal impedance of a single pile considering wave-induced seabed dynamic response [J]. Rock and Soil Mechanics, 2025, 46(5): 1563-1572.
[4] ZHANG Pei, YANG Cheng-ru, HOU Shi-wei, DU Xiu-li, . A mesoscopic numerical method for simulating soil-rock mixture based on cohesive zone element [J]. Rock and Soil Mechanics, 2025, 46(5): 1620-1631.
[5] ZHOU Wen-qiang, JIANG Liang-wei, LUO Qiang, XIAO Zhuo-qi, LUO Yi-lian, WEI Ming, . Shaking table test on seismic performance of anchoring frame beam with flexible external anchor heads [J]. Rock and Soil Mechanics, 2025, 46(4): 1163-1173.
[6] DONG Jian-hua, YANG Bo, TIAN Wen-tong, WU Xiao-lei, HE Peng-fei, ZHAO Lü-hua, LIAN Bo, . Research and development of novel anti-slide pile to prevent liquefaction and shaking table model test of seismic response [J]. Rock and Soil Mechanics, 2025, 46(4): 1084-1094.
[7] LIU Wen-jing, DENG Hui, ZHOU Xin. Dynamic response of high steep rock slope with a double-layer ductile shear zone under earthquake action [J]. Rock and Soil Mechanics, 2025, 46(11): 3534-3548.
[8] CAI Xiao-guang, XU Hong-lu, WANG Hai-yun, LI Si-han, LI Ying, . Horizontal seismic coefficient of geogrid reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2025, 46(10): 3033-3044.
[9] YANG Yao-hui, XIN Gong-feng, CHEN Yu-min, LI Zhao-feng, . Shaking table test on drainage pile-net composite foundation treated liquefiable subgrade [J]. Rock and Soil Mechanics, 2024, 45(S1): 178-186.
[10] MA Jian-xun, MOHAMMED El Hoseny, PANG Pan-wang, LI Wen-xiao, YAN Hong-xiang. Effects of basement stories on seismic response of high-rise buildings considering soil-structure interaction [J]. Rock and Soil Mechanics, 2024, 45(9): 2808-2822.
[11] LI Fu-xiu, GUO Wen-hao, ZHENG Ye-wei. Shaking table test of the back-to-back reinforced soil walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2024, 45(7): 1957-1966.
[12] HE Zi-lei, JIANG Guan-lu, FENG Hai-zhou, PAN Shen-xin, HE Xiao-long, LI Jie, . Dynamic response characteristics of bedrock and overburden layer slope supported by a combination of pile-sheet wall-anchor cables under earthquake action [J]. Rock and Soil Mechanics, 2024, 45(7): 2011-2023.
[13] WANG Zhi-de, SI Ying-ying, LI Jie, QIAN Meng-fan, AN Jia-xing, . Dynamic response of jointed granite under low strain rate impact load [J]. Rock and Soil Mechanics, 2024, 45(6): 1755-1762.
[14] ZHU Dan, JIANG Guan-lu, CHEN Hong-yu, ZHAO Xin-hui, HUANG De-gui, LIU Yi-fu, . Shaking table experimental study on the dynamic response characteristics of single and double-row pile-supported road graben slopes [J]. Rock and Soil Mechanics, 2024, 45(6): 1763-1777.
[15] TAO Zhi-gang, FENG Yu-xiang, ZHAO Yi , ZHANG Xiao-yu , HE Man-chao, LEI Xiao-tian, . Shaking table test on anti-seismic characteristics of NPR anchor cable support system for tunnel crossing faults [J]. Rock and Soil Mechanics, 2024, 45(4): 939-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!