›› 2015, Vol. 36 ›› Issue (S2): 178-184.doi: 10.16285/j.rsm.2015.S2.023

• 基础理论与实验研究 • 上一篇    下一篇

控制差异沉降的桩筏基础桩径优化分析方法

王 伟1,杨 敏2,上官士青2   

  1. 1. 上海同济启明星科技发展有限公司,上海 200092;2. 同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2015-03-24 出版日期:2015-08-31 发布日期:2018-06-14
  • 作者简介:王伟,男,1977年生,博士,高级工程师,主要从事桩基础和深基坑工程领域的研究

Pile diameter optimization analysis method of piled raft foundation based on minimization of differential settlements

WANG Wei1, YANG Min2, SHANGGUAN Shi-qing2   

  1. 1. Shanghai Tongji Qimstar Science & development Co., Ltd., Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2015-03-24 Online:2015-08-31 Published:2018-06-14

摘要: 桩径优化是桩筏基础以差异沉降最小化为目标的基础优化分析的重要组成部分。基于桩筏基础通用分析方法,结合遗传算法提出了包含非线性约束条件的以差异沉降控制为目标的桩筏基础桩径优化分析模型,并给出了优化分析的实施步骤。通过示例说明了桩径优化的实施情况,对比给出了优化前后基础沉降、桩基荷载分布与筏板分担比、筏板弯矩和剪力结果。最后通过参量分析研究了筏板厚度、桩基参量和土体参量对最优桩径确定的影响程度,桩长和土体特性对桩径优化结果影响显著,而桩体材料特性和筏板厚度对桩径优化结果影响不大。

关键词: 桩筏基础, 桩径优化, 遗传算法, 差异沉降

Abstract: Pile diameter optimization is an important part of piled raft foundation analysis for the purpose of minimizing the differential settlement. Based on a general analysis method of piled raft foundation, this paper proposed a pile diameter optimization model with the genetic algorithm. The optimization model contains an objective function of differential settlement and other nonlinear constraints. Detailed process steps are listed. Implementation of pile diameter optimization is illustrated by an example, with a contrast before and after the optimization of foundation settlement, pile load distribution, raft bearing ratio, shear and bending moment of the raft. The influences of raft thickness, piled foundation parameters and soil parameters on the optimal diameter are also studied by parameter analysis. Results show that piled length and soil property have a significant impact on radius optimization than pile body material properties and raft depth.

Key words: piled raft foundation, pile diameter optimization, genetic algorithm, differential settlement

中图分类号: 

  • TU 473.1
[1] 崔学杰, 晏鄂川, 陈 武. 基于改进遗传算法的岩体结构面产状聚类分析[J]. 岩土力学, 2019, 40(S1): 374-380.
[2] 王伟, 陈国庆, 郑水全, 张广泽, 王栋, . 考虑张拉-剪切渐进破坏的边坡矢量和法研究[J]. 岩土力学, 2019, 40(S1): 468-476.
[3] 谢芸菲, 迟世春, 周雄雄, . 复杂环境中大规模桩筏基础的优化设计方法研究[J]. 岩土力学, 2019, 40(S1): 486-493.
[4] 张治国, 张瑞, 黄茂松, 宫剑飞, . 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354-2368.
[5] 马春辉, 杨杰, 程琳, 李婷, 李雅琦, . 基于量子遗传算法与多输出混合核相关向量机的堆石坝材料参数自适应反演研究[J]. 岩土力学, 2019, 40(6): 2397-2406.
[6] 赖丰文,陈福全,万梁龙,. 考虑不完全土拱效应的浅层地基竖向应力计算[J]. , 2018, 39(7): 2546-2554.
[7] 温树杰,梁 超,宋亮亮,刘 刚,. 基于最小势能法的三维临界滑裂面搜索方法[J]. , 2018, 39(7): 2708-2714.
[8] 汤永净 ,赵锡宏,. 软土地基超高层建筑补偿桩筏基础案例再分析[J]. , 2016, 37(11): 3253-3262.
[9] 木林隆 ,连柯楠 ,黄茂松 ,李大钧,. 风机梁板式桩筏基础承载特性大型模型试验研究[J]. , 2015, 36(7): 1877-1882.
[10] 李 忠 ,杨 俊 , . 基于MPGA的复杂应力状态边坡稳定性分析[J]. , 2015, 36(5): 1488-1495.
[11] 姜 洲 ,高广运 ,赵 宏,. 地铁行车速度对盾构隧道运营沉降的影响分析[J]. , 2015, 36(11): 3283-3292.
[12] 李 宁 ,王李管 ,贾明涛 ,陈建宏 ,谭正华,. 改进遗传算法和支持向量机的岩体结构面聚类分析[J]. , 2014, 35(S2): 405-411.
[13] 姜晓婷 ,路 平 ,郑 刚 ,崔玉娇 ,崔 涛 , . 天津软土地区盾构掘进对上方建筑物影响分析[J]. , 2014, 35(S2): 535-542.
[14] 蒋 鑫 ,耿建宇,曾 诚,邱延峻 , . 山区公路拓宽路基与衡重式挡土墙动态相互作用的数值模拟[J]. , 2014, 35(S1): 443-450.
[15] 邱道宏 ,李术才 ,薛翊国 ,田 昊 ,闫茂旺,. 基于数字钻进技术和量子遗传-径向基函数神经网络的围岩类别超前识别技术研究[J]. , 2014, 35(7): 2013-2018.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄建华,宋二祥. 大型锚碇基础围护工程冻结帷幕力学性态研究[J]. , 2009, 30(11): 3372 -3378 .
[2] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[3] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[4] 邓 琴,郭明伟,李春光,葛修润. 基于边界元法的边坡矢量和稳定分析[J]. , 2010, 31(6): 1971 -1976 .
[5] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283 -2288 .
[6] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[7] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[8] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[9] 刘振平,贺怀建,朱发华. 基于钻孔数据的三维可视化快速建模技术的研究[J]. , 2009, 30(S1): 260 -266 .
[10] 魏厚振,颜荣涛,韦昌富,吴二林,陈 盼,田慧会. 含天然气水合物沉积物相平衡问题研究综述[J]. , 2011, 32(8): 2287 -2294 .