›› 2015, Vol. 36 ›› Issue (11): 3283-3292.doi: 10.16285/j.rsm.2015.11.033

• 岩土工程研究 • 上一篇    下一篇

地铁行车速度对盾构隧道运营沉降的影响分析

姜 洲1,高广运2,赵 宏2   

  1. 1. 安徽省综合交通研究院股份有限公司,安徽 合肥 230001;2. 同济大学 岩土及地下工程教育部重点实验室,上海 200092
  • 收稿日期:2015-07-23 出版日期:2015-11-11 发布日期:2018-06-14
  • 作者简介:姜洲,男,1990年生,硕士,岩土工程专业,主要从事土动力学方面的研究工作。
  • 基金资助:

    国家自然科学基金项目(No.51178342);高等学校博士点基金博导类资助课题(No.20130072110016)。

Influence of subway train speed on operation-induced settlement of shield tunnel

JIANG Zhou1, GAO Guang-yun2, ZHAO Hong2   

  1. 1. Anhui Comprehensive Transportation Research Institute Co., Ltd., Hefei, Anhui 230001, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
  • Received:2015-07-23 Online:2015-11-11 Published:2018-06-14
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Grant No.51178342) and Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No.20130072110016).

摘要: 地铁行车荷载经轨道-道床-隧道结构传至地基,在土体内部产生循环动应力以及超孔隙水压力是引起盾构隧道沉降的重要原因。通过车-轨-隧道-地基竖向耦合动力模型分析隧道差异沉降对列车运行荷载的影响,以上海地铁一号线体育馆站附近区间隧道为工程背景建立三维数值模型,结合塑性累积应变及累积孔压经验公式进行计算,对比分析软土盾构隧道下卧土层有、无纵向差异沉降两种情况下,地铁行车速度对隧道运营沉降的影响。结果表明:列车运行速度越快,下卧土体波动越大,但衰减越快。地基差异沉降对其长期运营存在明显不利影响,随着列车速度增大,这种影响也愈加明显。当地基差异沉降小,轨道平顺条件好时,隧道长期沉降随地铁行车速度的增大而减小;当地基差异沉降突出,轨道存在明显不平顺时,隧道运营沉降随行车速度增大而显著增加。

关键词: 地铁, 行车速度, 行车荷载, 差异沉降, 运营沉降, 盾构隧道

Abstract: The traffic load transfers from track, roadbed, and tunnel structure to foundation, generating cyclic dynamic stress and excess pore water pressure in soil, inducing settlement of shield tunnel. A vertical coupling dynamical model of metro train, track, tunnel and foundation is developed and used to analyze the effect of differential settlement of tunnel foundation on subway traffic load. A three-dimensional numerical model is established based on the engineering background of the subway tunnel near the Stadium Station of Shanghai Metro Line 1. Combined with the calculation formulas of accumulated plastic strain and cumulative pore pressure, the influence of train speed on the long-term settlement of subway foundation without tunnel uneven deformation is analyzed and compared to the case with tunnel differential deformation. It is shown that the larger the amplitude of soil vibration is, the faster the amplitude attenuation becomes while the train speed gradually increases. The longitudinal differential settlement has significant adverse effect on the operation of subway tunnel. As the train speed increases, this effect becomes more significant. When the tunnel differential settlement is small and the track condition is good, tunnel operation settlement decreases as the metro driving speed increases. However, the long-term settlement of tunnel significantly increases as vehicle speed increases, while the foundation differential settlement becomes pronounced and the track irregularities are significant.

Key words: subway, train speed, traffic load, differential settlement, operation settlement, shield tunnel

中图分类号: 

  • U 459.3
[1] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[2] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[5] 丁智, 张霄, 金杰克, 王立忠, . 基坑全过程开挖及邻近地铁隧道变形实测分析[J]. 岩土力学, 2019, 40(S1): 415-423.
[6] 陈文化, 张谦. 地铁列车进出站时土层空间振动特性分析[J]. 岩土力学, 2019, 40(9): 3656-3661.
[7] 孙飞, 张志强, 易志伟. 正断层黏滑错动对地铁隧道结构影响 的模型试验研究[J]. 岩土力学, 2019, 40(8): 3037-3044.
[8] 杜文, 王永红, 李利, 朱连臣, 朱浩天, 王有旗, . 双层车站密贴下穿既有隧道案例分析及 隧道沉降变形特征[J]. 岩土力学, 2019, 40(7): 2765-2773.
[9] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[10] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[11] 张治国, 张瑞, 黄茂松, 宫剑飞, . 基于差异沉降和轴向刚度控制的竖向荷载作用下群桩基础优化分析[J]. 岩土力学, 2019, 40(6): 2354-2368.
[12] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[13] 刘念武, 陈奕天, 龚晓南, 俞济涛, . 软土深开挖致地铁车站基坑及 邻近建筑变形特性研究[J]. 岩土力学, 2019, 40(4): 1515-1525.
[14] 包汉营,陈文化,张 谦. 基于薄层法和移动坐标系法的地铁竖向振动在成层土层中传播[J]. , 2018, 39(9): 3277-3284.
[15] 赖丰文,陈福全,万梁龙,. 考虑不完全土拱效应的浅层地基竖向应力计算[J]. , 2018, 39(7): 2546-2554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[4] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[5] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[6] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[7] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[8] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .
[9] 龚维明,黄 挺,戴国亮. 海上风电机高桩基础关键参数试验研究[J]. , 2011, 32(S2): 115 -121 .
[10] 汪成兵. 均质岩体中隧道围岩破坏过程的试验与数值模拟[J]. , 2012, 33(1): 103 -108 .