岩土力学 ›› 2019, Vol. 40 ›› Issue (2): 743-758.doi: 10.16285/j.rsm.2017.1466

• 岩土工程研究 • 上一篇    下一篇

程潮铁矿西区地表塌陷成因分析

邓洋洋1, 2,陈从新1, 2,夏开宗1, 2,郑先伟3   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 武汉钢铁集团程潮铁矿有限责任公司,湖北 鄂州 436051
  • 收稿日期:2017-10-09 出版日期:2019-02-11 发布日期:2019-02-19
  • 通讯作者: 夏开宗,男,1988年生,博士,助理研究员,主要从事边坡稳定性、地下采矿稳定性等方面的研究工作。E-mail: xiakaizong1988@sina.com E-mail:dengyang_2014@sina.com
  • 作者简介:邓洋洋,男,1991年生,博士研究生,主要从事边坡稳定性、地下采矿稳定性等方面的研究工作。
  • 基金资助:
    国家自然科学基金青年基金(No. 41602325, No.11602284);国家自然科学基金面上项目(No.11472293)。

Cause analysis of surface collapse in western area of Chengchao iron mine

DENG Yang-yang1, 2, CHEN Cong-xin1, 2, XIA Kai-zong1, 2, ZHENG Xian-wei3   

  1. 1. State Key Laboratory of Geomechanics and Geolechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Chengchao Iron Mine of Wuhan Iron and Steel (Group) Company, Ezhou, Hubei 436051, China
  • Received:2017-10-09 Online:2019-02-11 Published:2019-02-19
  • Supported by:
    This work was supported by the National Natural Science Foundation for Youth Scholars of China (41602325, 11602284) and the General Program of National Natural Science Foundation of China(11472293).

摘要: 以程潮铁矿西区为例,结合矿区的地层岩性和地下采矿情况,系统分析了金属矿山地下开采引起的地下水位变化及地表突发性塌陷的原因。研究表明:地表塌陷主要受地下采矿的影响;在一定的地质水文条件下,地表塌陷时采空区高度与采矿深度呈线型关系;地表变形大小和扩展范围与地层岩性息息相关;连续降雨能诱发地表塌陷。地表塌陷可被分为4个阶段:间歇性向上崩落阶段、裂缝连通及扩展阶段、疏干塌陷阶段及地表塌坑群形成阶段。采空区上部岩体垮落是非充分的,岩体空隙随时间的积累和岩体崩落动态变化,崩落呈间歇性、跳跃性地向上发展。岩体崩落的高度与地层岩性有关,岩体强度越小,完整性越差,每次崩落高度越小,总崩落高度越大。随着矿体的开采,漏斗状水位降形成。地下水位降低不仅与采空区的相对位置有关,还受岩性构造所控制。岩体裂隙的产生及发展贯通为地下水向下流动提供了有利通道,可溶岩不断被侵蚀,黏土及岩屑被地下水容冲刷带走易在地下形成隐伏空区。硬石膏整体变形破坏会造成地下水的突涌,在地下隐伏空区内产生瞬时高负压,诱发地表塌陷。

关键词: 地下开采, 地表塌陷, 地下水, 地层岩性, 硬石膏

Abstract: In this study, Chengchao western iron mine is taken as a case to systematically analyze the variation of groundwater and the sudden collapse caused by underground mining by considering the lithology of rock mass and the influence of underground mining. The surface collapse is mainly controlled by underground mining. The relationship between goaf height and the mining depth is linear when the surface subsidence occurs under certain geological and hydrological conditions. The magnitude and extension range of surface deformation are closely related to lithology of strata around the goaf. Meanwhile, continuous rainfall may induce a sudden surface collapse. The surface collapse could be divided into 4 stages: intermittent upward caving stage, cracks connectivity and expansion stage, drainage collapse stage and formation stage of surface collapse pits group. Moreover, the collapse of rock mass above goaf is not sufficient. The accumulation of rock mass cracks with time and the dynamic change of rock mass collapse show intermittent and leaping upward development. The caving height of the overlying rock mass is related to lithology of strata. When rock mass strength decreases and rock mass integrity becomes poor, the single caving height becomes smaller while the total caving height becomes larger. A funnel-like water level drop gradually forms with the orebody exploitation. The decrease of groundwater level is not only related to the relative position of the goaf, but is controlled by the lithology and structure of surrounding rock. Furthermore, the formation and development of cracks in the rock mass provide favorable channels for the downward flow of groundwater. Soluble rocks are eroded continuously, clay and debris are washed away by groundwater, consequently, a hidden space is easily formed underground. The deformation and failure of the whole gypsum may cause the groundwater inrush which generates an instantaneous high negative pressure in the subsurface area, inducing the surface collapse.

Key words: underground mining, surface collapse, groundwater, lithology of strata, anhydrite

中图分类号: 

  • TD 853
[1] 徐进, 王少伟, 杨伟涛. 水位变化下可压缩土层的黏弹性耦合变形分析[J]. 岩土力学, 2020, 41(3): 1065-1073.
[2] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[3] 郑 刚, 栗晴瀚, 哈 达, 程雪松, . 天津市承压层应力状态及减压引发沉降规律研究[J]. 岩土力学, 2018, 39(S2): 285-294.
[4] 陈 钒,吴建勋,任 松,欧阳汛,王 亮,范金洋,. 基于湿度应力场理论的硬石膏岩膨胀试验研究[J]. , 2018, 39(8): 2723-2731.
[5] 任 松, 吴建勋, 欧阳汛, 刘 戎, 王 亮, . 压力水作用下硬石膏岩膨胀性研究[J]. 岩土力学, 2018, 39(12): 4351-4359.
[6] 刘世伟,盛 谦,朱泽奇,龚彦峰,崔 臻,李建贺,张善凯,. 隧道围岩内地下水渗流边界效应影响研究[J]. , 2018, 39(11): 4001-4009.
[7] 汪北方,梁 冰,王俊光,孙可明,孙维吉,迟海波,. 煤矿地下水库岩体碎胀特性试验研究[J]. , 2018, 39(11): 4086-4092.
[8] 刘路路,宋 亮,焦玉勇,王 浩,张秀丽,谢壁婷, . 库水位波动条件下黄土坡临江1#崩滑堆积体稳定性研究[J]. , 2017, 38(S1): 359-366.
[9] 孙 伟,吴爱祥,侯克鹏,杨 溢,刘 磊,. 基于X-Ray CT试验的塌陷区回填体孔隙结构研究[J]. , 2017, 38(12): 3635-3642.
[10] 鲍树峰,娄 炎,董志良,牛 飞,谢荣星, . 负压环境下新型地下水位测试装置研发[J]. , 2017, 38(10): 3067-3073.
[11] 邓洋洋,陈从新,夏开宗,付 华,张海娜. 程潮铁矿东主井区地表变形特征和机制分析[J]. , 2016, 37(S1): 455-461.
[12] 马少坤,邵 羽,吕 虎,WONG K S ,吴宏伟,陈 欣,江 杰,. 地下水位循环变化时隧道开挖对群桩的长期影响研究[J]. , 2016, 37(6): 1563-1568.
[13] 夏开宗,陈从新,付 华,郑 允,邓洋洋. 金属矿山崩落采矿法引起的岩层移动规律分析[J]. , 2016, 37(5): 1434-1440.
[14] 马秀媛 ,张 立 ,苏 强 ,惠 冰 ,王者超 ,薛翊国 ,李术才,. 大型地下水封石油洞库水幕系统优化设计研究[J]. , 2016, 37(3): 776-782.
[15] 陈 宝,田昌春,郭家兴,陈建琴,. 地下水对压实高庙子膨润土冲蚀作用研究[J]. , 2016, 37(11): 3224-3230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!