岩土力学 ›› 2019, Vol. 40 ›› Issue (2): 570-579.doi: 10.16285/j.rsm.2017.1469

• 基础理论与实验研究 • 上一篇    下一篇

轴对称径向非均质土中单桩纵向振动特性研究

崔春义1, 2,孟 坤1,武亚军3,马科研1,梁志孟1   

  1. 1. 大连海事大学 土木工程系,辽宁 大连 116026;2. 北京工业大学 城市与工程安全减灾省部共建教育部重点实验室,北京 100124; 3. 上海大学 土木工程系,上海 200072
  • 收稿日期:2017-07-12 出版日期:2019-02-11 发布日期:2019-02-14
  • 作者简介:崔春义,男,1978年生,博士,副教授,博士生导师,主要从事岩土力学数值方法和结构-地基相互作用等方面的教学和科研工作。
  • 基金资助:
    国家自然科学基金面上项目(No. 51578100);中央高校基本科研业务费专项资金资助(No. 3132014326)

Dynamic impedance for vertical vibration of a single pile in axisymmetrically surrounding soil considering radial inhomogeneity

CUI Chun-yi1, 2, MENG Kun1, WU Ya-jun3, MA Ke-yan1, LIANG Zhi-meng1   

  1. 1. Department of Civil Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China; 2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China; 3. Department of Civil Engineering, Shanghai University, Shanghai 200072, China
  • Received:2017-07-12 Online:2019-02-11 Published:2019-02-14
  • Supported by:
    This work was supported by the General Program of National Natural Science Foundation of China(51578100) and the Fundamental Research Funds for the Central Universities (3132014326)

摘要: 为了分析径向非均质土中单桩纵向振动特性,基于复刚度传递径向多圈层并采用黏性阻尼模型描述桩周土材料阻尼,建立了三维轴对称径向成层非均质土体中桩基纵向振动简化分析模型。采用Laplace变换和复刚度传递方法,递推得出桩周土体与桩体界面处复刚度,进而利用桩-土完全耦合条件推导得出桩顶动力阻抗解析解,并将所得解退化到均质土情况,与已有解答进行比较验证其合理性。在此基础上对桩基纵向振动特性进行参数化分析,计算结果表明:桩周土体阻尼系数、桩底土阻尼因子仅对桩顶动力阻抗曲线振幅有较明显的影响,而桩底土刚度因子对桩顶动力阻抗曲线振幅及共振频率均有显著影响;桩周土软(硬)化程度越高(低),桩顶动力阻抗曲线振幅越大(小);桩周土软(硬)化范围越大,桩顶动力阻抗曲线振幅水平越高(低);但桩周土软(硬)化程度、软(硬)化范围对桩顶动力阻抗曲线共振频率影响则可忽略。

关键词: 三维轴对称, 施工扰动, 复刚度传递模型, 黏性阻尼, 动力阻抗

Abstract: For the aim to analyze the vibration characteristics of a single pile surrounded by radially inhomogeous soil, a simplified mechanical model for vertical vibration of a single pile embedded in a radially inhomogeneous viscoelastic soil is proposed by employing the viscous damping and three-dimensional axisymmetric continuum model with annular transferred complex stiffness. Firstly, the complex stiffness at the interfaces between soil and pile is derived using Laplace transform and complex stiffness transfer method. Secondly, an analytical solution for dynamic impedance at the pile head is obtained by using the compatibility condition of pile and radially inhomogeneous surrounding soil. Furthermore, the obtained analytical solution for dynamic impedance at the pile head is reduced to verify its validity by comparison with an existing solution. Extensive parametric analyses are performed to investigate the effects of the parameters on the vibration characteristics at pile head. The computational results show that the viscous damping coefficient and the damping factor only have significant influence on the amplitude of dynamic impedance at pile head, while the stiffness factor has significant influence on the amplitude and resonance frequency of dynamic impedance at pile head. The higher the degree of softening (hardening) of the surrounding soil, the larger (smaller) the amplitude of the dynamic impedance at pile head. The larger the range of softening (hardening) of the soil around the pile, the higher (lower) the level of the dynamic impedance at pile head. However, the influences of the degree of softening (hardening) of the soil around the pile and the range of softening (hardening) on the resonance frequency of the dynamic impedance at pile head can be neglected.

Key words: three-dimensional axisymmetry, construction disturbance, complex stiffness transfer model, viscous damping, dynamic impedance

中图分类号: 

  • TU 443
[1] 乔亚飞, 唐洁, 顾贇, 丁文其, . 超深地连墙槽壁侧压力演变模式 及其施工扰动分析[J]. 岩土力学, 2022, 43(4): 1083-1092.
[2] 孟坤, 崔春义, 许成顺, 梁志孟, 杨刚, . 基于虚土桩模型的三维饱和介质中 浮承桩纵向振动特性分析[J]. 岩土力学, 2019, 40(11): 4313-4323.
[3] 李术才,潘东东,许振浩,李利平,林 鹏,袁永才,高成路,路 为, . 承压型隐伏溶洞突水灾变演化过程模型试验[J]. , 2018, 39(9): 3164-3173.
[4] 刘林超,闫启方,闫 盼. 考虑三维波动的饱和土中管桩群桩的水平振动研究[J]. , 2017, 38(10): 2817-2825.
[5] 涂文博,黄茂松,钟 锐, . 考虑应力历史的冲刷对沉箱加桩复合基础水平振动特性影响研究[J]. , 2016, 37(9): 2577-2584.
[6] 黎春林 ,缪林昌,. 盾构隧道施工土体扰动范围研究[J]. , 2016, 37(3): 759-766.
[7] 付晓东,盛 谦,张勇慧. 非连续变形分析方法中的阻尼问题研究[J]. , 2015, 36(7): 2057-2062.
[8] 高广运,赵元一,高 盟,杨成斌. 分层土中群桩水平动力阻抗的改进计算[J]. , 2010, 31(2): 509-515.
[9] 刘林超,杨 骁. 基于薄层法的饱和土桩纵向振动研究[J]. , 2010, 31(1): 92-98.
[10] 邓永锋,刘松玉,洪振舜. 水泥土搅拌桩施工扰动评价的一种方法[J]. , 2009, 30(3): 717-720.
[11] 孙统立 ,张庆贺 ,韦良文 ,吴敏慧 ,张冬茵 . 双圆盾构掘进施工扰动土体附加应力分析[J]. , 2008, 29(8): 2246-2251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 奎,高 波. 地铁隧道下穿小河和桥梁的施工方案研究[J]. , 2010, 31(5): 1509 -1516 .
[2] 杨 冰,杨 军,常 在,甘厚义,宋二祥. 土石混合体压缩性的三维颗粒力学研究[J]. , 2010, 31(5): 1645 -1650 .
[3] 肖世国,鲜 飞,王唤龙. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] 叶海林,郑颖人,黄润秋,杜修力,李安洪,许江波. 强度折减动力分析法在滑坡抗滑桩抗震设计中的应用研究[J]. , 2010, 31(S1): 317 -323 .
[5] 张志沛,彭 惠,饶 晓. 软土地基注浆扩散过程数值模拟研究[J]. , 2011, 32(S1): 652 -0655 .
[6] 吴礼舟 ,张利民 ,黄润秋. 成层非饱和土渗流的耦合解析解[J]. , 2011, 32(8): 2391 -2396 .
[7] 刘 润 ,王秀妍 ,刘月辉 ,王武刚. 点支撑缺陷下海底埋管热屈曲分析[J]. , 2011, 32(S2): 64 -69 .
[8] 梁耀哲. 刚性桩复合地基的主动土压力分析[J]. , 2012, 33(S1): 25 -29 .
[9] 韩建新 ,李术才 ,李树忱 ,杨为民 ,汪 雷 . 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. , 2013, 34(2): 342 -346 .
[10] 黄 达 ,岑夺丰 ,黄润秋 . 单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J]. , 2013, 34(2): 535 -545 .