›› 2018, Vol. 39 ›› Issue (3): 1137-1144.doi: 10.16285/j.rsm.2017.1507

• 测试技术 • 上一篇    下一篇

基于毛管浸润技术的岩石孔隙率无损测试

刘 杰,黄 飞,杨渝南,杨 绪   

  1. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 收稿日期:2017-07-17 出版日期:2018-03-12 发布日期:2018-06-06
  • 通讯作者: 杨渝南,女,硕士,讲师,主要从事环境岩土工程的研究工作。E-mail: yangyunan_11@163.com E-mail:liujiea@126.com
  • 作者简介:刘杰,男,1979年生,博士,教授,主要从事岩土边坡工程及卸荷岩体力学的研究工作
  • 基金资助:

    成都理工大学地质灾害防治与地质环境保护国家重点实验室开放基金项(No.SKLGP2016K023);长江科学院开放研究基金资助项目(No.CKWV2016377/KY);国家科技支撑计划项目(No.2015BAB07B08);国家自然科学基金项目(No.51439003,No.51579138)。

Nondestructive testing of porosity of rock based on capillary infiltration technique

LIU Jie, HUANG Fei, YANG Yu-nan, YANG Xu   

  1. Key Laboratory of Geological Hazards, Ministry of Education, Three Gorges Reservoir Area, Three Gorges University, Yichang, Hubei 443002, China
  • Received:2017-07-17 Online:2018-03-12 Published:2018-06-06
  • Supported by:

    This work was supported by Chengdu University of Technology State Key Laboratory of Geological Disaster Prevention and Geological Environmental Protection Open Fund Projects (SKLGP2016K023), CRSRI Open Research Program of (CKWV2016377/KY), the National Science-Technology Support Plan Projects (2015BAB07B08) and the National Natural Science Foundation of China (51439003, 51579138).

摘要: 以岩石主要表征参数孔隙率变化作为岩石损伤分析的着力点,开发了一种无损的定量分析岩土损伤的毛管浸润技术。通过对孔隙土体的毛管浸润试验研究了浸润速率、浸润面积和浸润深度随孔隙率的变化规律,提出了毛细管束模型并对毛管浸润技术的机制进行了深入研究。相对于现有的有损且不可重复测量技术,毛管浸润技术操作简便,成本低廉,且对于特定的损伤岩体,可以通过试验建立滴定参数与力学参数的联系。基于毛管束模型中毛管浸润对孔隙体下部的作用,分别建立了毛管浸润的圆柱模型1、圆柱模型2和球状模型,由上部液柱下降高度 以及表面浸润面半径 推算下部孔隙体中液体浸润深度L。根据实际孔隙土体的浸润参数对上述模型进行验证计算,指出球状浸润模型能够更好地模拟实际毛管浸润过程中液体的浸润深度情况。基于毛细管束模型,由浸润参数即浸润深度与浸润速率的关系,分别建立了3种模型的孔隙率计算公式。针对球缺模型的孔隙率 进行验算,发现计算值与实测孔隙率的误差不超过10%,指出在求解一般精度要求下的孔隙率时,用该孔隙率公式计算的结果是合理有效的。

关键词: 毛管浸润技术, 孔隙率:毛管束模型, 柱状模型, 球状模型

Abstract: Taking the rock porosity as the focal point of rock damage analysis, this study is to develop a capillary infiltration technique for non-destructive quantitative analysis of the geotechnical damage. Moreover, variations of the capillary infiltration rate, infiltration area and depth of infiltration are investigated by changing the porosity in capillary infiltration tests. The capillary bundle model is proposed and the mechanism of capillary infiltration technique is also analysed in depth. Compared with the existing damage and non-repeatable measurement technologies, this technology is easy to operate and low cost. In particular, for a rock with specific damage, we can establish a relationship between titration parameters and mechanical parameters. In addition, the capillary model 1, the cylindrical model 2 and the spherical model are put forward, respectively, by considering the effect of capillary infiltration on the lower part of the capillary body in the capillary bundle model. The depth of the liquid infiltration in the lower porosity L is estimated from the upper liquid column descending height and the surface of infiltration radius a. According to the infiltration parameters of the actual pore soil, the validation of the above model is verified. In addition, the result indicates that the spherical infiltration model can better simulate the infiltration depth of the liquid during the process of capillary infiltration. Based on the capillary bundle model, the porosity calculation formulas of three models are separately deduced by the infiltration rate, which is the relationship between the infiltration depth and the infiltration rate. The calculated porosity of the spherical cap model is examined with the measured porosity, and its error is less than 10%. Therefore, the results calculated by this porosity formula are reasonable and effective for general accuracy requirements.

Key words: capillary infiltration technique, porosity: capillary bundle model, columnar model, spherical model

中图分类号: 

  • TU 452

[1] 郭 亮,胡卸文,李晓昭,巫锡勇,吴礼舟,李 煜,罗 刚,马洪生,. 花岗岩断裂带原状裂隙岩水力特性试验研究[J]. , 2018, 39(11): 3937-3948.
[2] 张希巍,王 刚,蔡 明,徐 荃,. 凌海花岗岩变形特点与脆性评价[J]. , 2018, 39(10): 3515-3524.
[3] 陈 松,乔春生,叶 青,邓 斌. 基于摩尔-库仑准则的断续节理岩体复合损伤本构模型[J]. , 2018, 39(10): 3612-3622.
[4] 李术才,潘东东,许振浩,李利平,林 鹏,袁永才,高成路,路 为, . 承压型隐伏溶洞突水灾变演化过程模型试验[J]. , 2018, 39(9): 3164-3173.
[5] 左宇军,孙文吉斌,邬忠虎,许云飞,. 渗透压–应力耦合作用下页岩渗透性试验[J]. , 2018, 39(9): 3253-3260.
[6] 王凤云,钱德玲. 基于切向应变软化的深埋圆形隧道围岩弹塑性分析[J]. , 2018, 39(9): 3313-3320.
[7] 郑安兴,罗先启,. 危岩水力劈裂分析的扩展有限元法[J]. , 2018, 39(9): 3461-3468.
[8] 傅 晏,袁 文,刘新荣,缪露莉,谢文博,. 酸性干湿循环作用下砂岩强度参数劣化规律[J]. , 2018, 39(9): 3331-3339.
[9] 刘泉声,彭星新,黄 兴,雷广峰,魏 莱,刘 鹤,. 全断面隧道掘进机护盾受力监测及卡机预警[J]. , 2018, 39(9): 3406-3414.
[10] 李小飞,孙江涛,陈卫忠,袁敬强,刘金泉,张庆艳,. 纤维硅灰水泥石强度与浆液抗冲刷特性[J]. , 2018, 39(9): 3157-3163.
[11] 李东奇,李宗利,吕从聪. 考虑裂隙附加水压的岩体断裂强度分析[J]. , 2018, 39(9): 3174-3180.
[12] 吴永胜,谭忠盛,余贤斌,喻 渝,朱 勇,. 不同加载方位角下单轴压缩千枚岩扩容特性[J]. , 2018, 39(8): 2747-2754.
[13] 李 杨,佘成学. 堆石料单粒强度尺寸效应的颗粒流模拟方法研究[J]. , 2018, 39(8): 2951-2959.
[14] 李 帅,朱万成,牛雷雷,李如飞,李少华. 动态扰动对应力松弛岩石变形行为影响的试验研究[J]. , 2018, 39(8): 2795-2804.
[15] 王斐笠,王述红,修占国. 应力波扰动下结构面的应力量化及强度表征[J]. , 2018, 39(8): 2844-2850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!