岩土力学 ›› 2019, Vol. 40 ›› Issue (9): 3593-3602.doi: 10.16285/j.rsm.2018.1169

• 岩土工程研究 • 上一篇    下一篇

雀儿山隧道冰碛地层冻胀力原位测试及计算分析

严健1, 2,何川1,晏启祥1,许金华3   

  1. 1. 西南交通大学 交通隧道工程教育部重点实验室,四川 成都 610031;2. 西南交通大学 土木工程学院,四川 成都 610031; 3. 四川川西高速公路有限责任公司,四川 成都 610041
  • 收稿日期:2018-06-30 出版日期:2019-09-10 发布日期:2019-09-08
  • 通讯作者: 晏启祥,男,1971年生,博士,教授,主要从事地下工程方面的研究工作。E-mail: yanqixiang@home.swjtu.edu.cn E-mail: sharefuture33@163.com
  • 作者简介:严健,男,1979年生,博士,讲师,主要从事高海拔隧道工程方面的研究工作。
  • 基金资助:
    国家重点研发计划项目(No.2016YFC0802201);中国铁路总公司科技研究开发计划项目(No.2017G006-B);高铁联合基金资助项目(No.U1734205);国家自然科学基金项目(No.51678500);国家留学基金资助项目(No.201707005101)

In-situ test and calculational analysis on frost heaving force of moraine stratum in Que’er moutain tunnel

YAN Jian1, 2, HE Chuan1, YAN Qi-xiang1, XU Jin-hua3   

  1. 1. MOE Key Laboratory of Transportation Tunnel Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. West Sichuan Expressway Co., Ltd., Chengdu, Sichuan 610041, China
  • Received:2018-06-30 Online:2019-09-10 Published:2019-09-08
  • Supported by:
    This work was supported by the National Key R&D Program of China(2016YFC0802201), the Research and Development Project from China Railways Corporation(2017G006-B), the High-speed Rail Joint Fund(U1734205), the National Natural Science Foundation of China (NSFC)(51678500) and China Scholarship Council(201707005101).

摘要: 以国道317线雀儿山隧道为工程依托,进行了隧道洞口冰碛地层的冻胀力原位测试,同时结合数值模拟、理论模型计算等方法,得到了冻融圈厚度、冻胀压力以及冻结前后衬砌结构内外测的应力。在此基础上,计算得到了衬砌结构的轴力、弯矩分布和变化规律,并与已有研究结果进行了比较分析。研究结果表明:寒区隧道洞口段冰碛地层作为高原常见季冻土受低温影响显著,低温持续22 h时冻融圈厚度达2 m左右;采用隧道冻胀力计算模型计算得到的冻胀压力在19.8~158.3 kPa之间,原位测试的冻胀压力在40~240 kPa之间,其中拱脚处最小,仰拱处最大;冰碛地层冻结前后的衬砌结构内侧、外侧应力各自具有复杂的变化和分布规律,冻结状态下衬砌结构轴力呈“扇”形分布,弯矩呈“蝶”形分布。与相关研究成果比较分析表明,现场采用的原位测试方法合理,结果更准确。

关键词: 隧道工程, 冰碛地层, 冻融圈, 冻胀力, 原位测试

Abstract: In this study, the Que’er moutain tunnel in the project of No. 317 national highway was investigated, and the frost heaving force of the moraine stratum at the entrance of the tunnel was measured in-situ by the self-designed test method. Meanwhile, the thickness of the freeze-thaw circle and frost-heaving force in the cold region was obtained by combining the numerical simulation and the theoretical calculation. Based on the frost heaving stress measured inside and outside the lining structures, the axial force, the bending moment distribution, and variation law of lining structure were calculated and compared with the existing research results. The results show that moraine stratum in the cold region, as the regular seasonal frozen soil in the plateau, are significantly affected by low temperature, and the thickness of freeze-thaw circle is about 2 m under low temperature for 22 hours. The frost heaving pressure is 19.8?158.3 kPa by frost heaving force calculation, while it is 40?240 kPa from the in-situ measurement. Besides, the smallest frost heaving pressure is found at the arch foot, while the largest value is at the inverted arch. The changes and distribution rules of the stresses inside and outside the lining structures in the moraine stratum are complex and different under the freezing and thawing conditions. The axial force and bending moment of the lining in the frozen state are fan-shaped and butterfly-shaped distributions, respectively. Compared with related research results, the in-site testing method is more reasonable, and the results are more accurate.

Key words: tunnel engineering, moraine stratum, freeze-thaw circle, frost heaving pressure, in-situ measure

中图分类号: 

  • U451
[1] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
[2] 于 正, 杨龙才, 张 勇, 赵 伟, . 考虑地层变异特征一致性的围岩变形不确定性分析[J]. 岩土力学, 2019, 40(5): 1947-1956.
[3] 严 健, 何 川, 汪 波, 蒙 伟, . 高地温对隧道岩爆发生的影响性研究[J]. 岩土力学, 2019, 40(4): 1543-1550.
[4] 王剑锋, 李天斌, 马春驰, 张航, 韩瑀萱, 周雄华, 姜宇鹏, . 基于引力搜索法的隧道围岩微震定位研究[J]. 岩土力学, 2019, 40(11): 4421-4428.
[5] 闫高明, 申玉生, 高 波, 郑 清, 范凯祥, 黄海峰. 穿越黏滑断层分段接头隧道模型试验研究[J]. 岩土力学, 2019, 40(11): 4450-4458.
[6] 莫品强, 高新慰, 黄子丰, 马丹阳, . 下穿隧道开挖引起的挤土桩沉降控制分析方法[J]. 岩土力学, 2019, 40(10): 3823-3832.
[7] 谷拴成,周 攀,黄荣宾. 锚杆–围岩承载结构支护下隧洞稳定性分析[J]. , 2018, 39(S1): 122-130.
[8] 李小飞,孙江涛,陈卫忠,袁敬强,刘金泉,张庆艳,. 纤维硅灰水泥石强度与浆液抗冲刷特性[J]. , 2018, 39(9): 3157-3163.
[9] 刘 聪,李术才,周宗青,李利平,王 康,侯福金, 秦承帅,高成路,. 复杂地层超大断面隧道施工围岩力学特征模型试验[J]. , 2018, 39(9): 3495-3504.
[10] 张玉伟,谢永利,李又云,赖金星,. 基于温度场时空分布特征的寒区隧道冻胀模型[J]. , 2018, 39(5): 1625-1632.
[11] 吴顺川,韩 伟,陈 钒,徐淼斐,丛子杰,. 基于膨胀本构的石膏岩隧道衬砌缓冲层厚度优化研究[J]. , 2018, 39(4): 1182-1191.
[12] 田亚护,胡康琼,邰博文,沈宇鹏,王腾飞,. 不同因素对排水沟渠水平冻胀力的影响[J]. , 2018, 39(2): 553-560.
[13] 王国富,曹正龙,路林海,王 蓉,王 丹,韩 帅,. 黄河冲积层静止土压力系数原位测定与分析[J]. , 2018, 39(10): 3900-3906.
[14] 黄诗冰,刘泉声,程爱平,刘艳章,. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. , 2018, 39(1): 78-84.
[15] 腾俊洋,张宇宁,唐建新,张 闯,李臣林, . 锚固方式对节理岩体剪切性能影响试验研究[J]. , 2017, 38(8): 2279-2285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!