岩土力学 ›› 2020, Vol. 41 ›› Issue (1): 285-294.doi: 10.16285/j.rsm.2018.2322

• 岩土工程研究 • 上一篇    下一篇

盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测

王忠凯,徐光黎   

  1. 中国地质大学(武汉)工程学院,湖北 武汉 430074
  • 收稿日期:2018-12-24 修回日期:2019-06-04 出版日期:2020-01-13 发布日期:2020-01-05
  • 通讯作者: 徐光黎,男,1963年生,博士,教授,博士生导师,从事岩土工程的教学与科研工作。E-mail: xu1963@cug.edu.com E-mail: wzk4016@163.com
  • 作者简介:王忠凯,男,1990年生,博士研究生,主要从事地下隧道施工对周边环境影响方面的研究
  • 基金资助:
    国家自然科学基金项目(No.41772314)

Influence range and quantitative prediction of surface deformation during shield tunnelling and exiting stages

WANG Zhong-kai, XU Guang-li   

  1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2018-12-24 Revised:2019-06-04 Online:2020-01-13 Published:2020-01-05
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41772314).

摘要: 针对盾构掘进中、离开后施工阶段,依据土体弹塑性应力?应变关系进行分析,准确预测地表变形量及影响范围具有重要的理论意义和工程应用价值。在导出隧道周围土体塑性松动圈范围的基础上,提出了盾构掘进中、离开后土体内产生的复合滑动面平面段与水平面夹角分别成45°?φ/2和45°+φ/2(φ为内摩擦角)的结论,推导了土体呈主动、被动状态复合滑动面安全系数Fs公式,并利用随机搜索法,找出可能的滑动面,量化确定盾构掘进、离开阶段横向扰动影响范围。盾构掘进中,地表隆起因盾构上部土体发生剪切位移引起,通过直剪试验曲线中控制应力?1、?2、?3及不同阶段剪切模量Ge、Gp1、Gp2,并依据?-l曲线控制应力?1、?2、?m及相对应的距离l1、l2、lm,推导出剪切位移公式,预测地表隆起量;盾构离开后,地表沉降由盾构上部土体卸荷产生的负超孔隙水压力消散引起土体固结所致,应用修正剑桥模型中土体剪切应变预测沉降量。以武汉过江隧道为工程案例,对地表变形影响范围及隆沉量进行量化计算,得出盾构不同施工阶段横向扰动影响范围、地表隆起量与工程实测值吻合较好,卸荷沉降预测值与总沉降实测值趋势一致。

关键词: 变形预测, 扰动影响范围, 剪切位移法, 修正剑桥模型, 盾构施工

Abstract: Accurate prediction of ground deformation and its influence range based on the elastic-plastic stress-strain relationship of soil during and after shield tunnelling has important theoretical significance and engineering application value. On the basis of deducing the scope of plastic loosening zone of surrounding soil, this paper puts forward the conclusion that the angle between plane segment and horizontal plane of composite sliding surface produced during shield tunnelling and after leaving is 45°?φ/2 and 45°+φ/2 (φ is internal friction angle), respectively. The formula of safety factor Fs for the composite sliding surface in soil under both active and passive states is proposed. Moreover, the possible sliding surface is ascertained by the random search method, and the influence range of lateral disturbance in shield tunnelling and departure stage is quantitatively determined. In shield tunnelling, the surface uplift is caused by the shear displacement of the soil on top of the shield. The shear displacement formula is deduced to predict the surface uplift by controlling stress τ1, τ2, τ3 and the shear modulus Ge, Gp1, Gp2 at different stages in the direct shear test curve, as well as controlling stress τ1, τ2, τm and corresponding distances l1, l2, lm according to the τ-l curve. After the shield is removed, the ground settlement is caused by the consolidation of the soil resulted from the dissipation of negative excess pore water pressure responding to the soil unloading on top the shield. The shear strain of the soil according to the modified Cambridge model is used to predict the settlement. Taking Wuhan River-crossing Tunnel as an engineering case, the influence range of surface deformation, heave and settlement are calculated quantitatively. It is concluded that the influence range of transverse disturbance and heave of surface at different construction stages of shield tunnelling are in good agreement with the measured values, and the predicted value of unloading settlement is in accordance with the measured value of the total settlement.

Key words: deformation prediction, disturbance influence range, shear displacement method, modified Cam-clay model, shield tunnelling

中图分类号: 

  • TV 233.4
[1] 郭健, 陈健, 胡杨. 基于小波智能模型的地铁车站基坑变形 时序预测分析[J]. 岩土力学, 2020, 41(S1): 299-304.
[2] 张玉伟, 翁效林, 宋战平, 谢永利, . 考虑黄土结构性和各向异性的修正剑桥模型[J]. 岩土力学, 2019, 40(3): 1030-1038.
[3] 邱 敏, 袁 青, 李长俊, 肖超超, . 基于孔穴扩张理论的黏土不排水抗剪强度 计算方法对比研究[J]. 岩土力学, 2019, 40(3): 1059-1066.
[4] 郭 飞,陶连金,孔 恒,马红红,张丽丽,张新全,. 兰州砂卵石地层盾构施工振动传播及衰减特性分析[J]. , 2018, 39(9): 3377-3384.
[5] 闫澍旺,张京京,田英辉,陈 浩,. 等向固结饱和黏土卸载孔压特性的试验与理论研究[J]. , 2018, 39(3): 775-781.
[6] 黄晓康,卢坤林,朱大勇, . 盾构施工对不同位置地下管线变形的影响模拟试验研究[J]. , 2017, 38(S1): 123-130.
[7] 周立朵,孔纲强,彭怀风,顾红伟,朱 希,. 倾斜荷载下群桩承载特性理论分析[J]. , 2017, 38(9): 2647-2654.
[8] 孟 蒙,陈智强,黄 达,曾 彬,陈赐金,. 基于H-P滤波法、ARIMA和VAR模型的库区滑坡位移综合预测[J]. , 2016, 37(S2): 552-560.
[9] 谢雄耀,李 军,王 强, . 盾构施工地表沉降自动化监测及数据移动发布系统[J]. , 2016, 37(S2): 788-794.
[10] 李 林,李镜培,岳著文,唐剑华, . 饱和黏土中钻孔灌注桩孔壁稳定性力学机制研究[J]. , 2016, 37(9): 2496-2504.
[11] 杨期君 ,赵春风 , . 含气水合物沉积物弹塑性损伤本构模型探讨[J]. , 2014, 35(4): 991-997.
[12] 吴小锋,李光范,胡 伟,王晓亮. 海口红黏土的结构性本构模型研究[J]. , 2013, 34(11): 3187-3191.
[13] 代春泉 ,王 磊 . 深基坑施工变形预测VAR建模与应用分析[J]. , 2012, 33(S2): 395-400.
[14] 高广运 ,柴俊磊 ,张先林 ,金清山 . 基于三维数值分析的基坑突涌临界水头确定方法[J]. , 2012, 33(S1): 251-256.
[15] 马 刚 ,常晓林 ,周 伟 ,花俊杰 . 高堆石坝瞬变-流变参数三维全过程联合反演方法及变形预测[J]. , 2012, 33(6): 1889-1895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!