岩土力学 ›› 2020, Vol. 41 ›› Issue (S1): 279-289.doi: 10.16285/j.rsm.2019.1488

• 岩土工程研究 • 上一篇    下一篇

崩落法开采金属矿巷道围岩破坏机制的断层效应

杨括宇1, 2,陈从新1,夏开宗1,宋许根3,张伟1,张褚强4,王田龙1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 中铁第四勘察设计院集团有限公司 道路交通设计研究院,湖北 武汉 430063;4. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068
  • 收稿日期:2019-08-28 修回日期:2019-12-16 出版日期:2020-06-19 发布日期:2020-06-09
  • 通讯作者: 夏开宗,男,1988年生,博士,助理研究员,主要从事边坡稳定性、地下采矿稳定性等方面的研究工作。E-mail:kzxia@whrsm.ac.cn E-mail:yky19910101@126.com
  • 作者简介:杨括宇,男,1991年生,博士研究生,主要从事地下岩土工程稳定性方向的研究

Fault effect on the failure mechanism of surrounding rock in metal mine roadway by caving method

YANG Kuo-yu 1, 2, CHEN Cong-xin1, XIA Kai-zong1, SONG Xu-gen3, ZHANG Wei1, ZHANG Chu-qiang4, WANG Tian-long1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2.University of Chinese Academy of Sciences, Beijing 100049, China; 3.Institute of Road Transportation, China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan, Hubei 430063, China; 4. School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
  • Received:2019-08-28 Revised:2019-12-16 Online:2020-06-19 Published:2020-06-09

摘要: 采用现场调查、数值模拟和地质力学分析的方法,以金山店铁矿东区?340 m和?410 m阶段运输巷为研究背景,开展巷道围岩变形破坏的断层效应研究。研究结果表明,采矿影响区内的断层破碎带巷道变形破坏严重,围岩破坏模式主要表现为巷道顶板垮塌、顶板非对称下沉变形、巷道围岩内挤变形引起的片帮或剥落、巷帮水平张拉裂缝等等模式;?340 m阶段运输巷所在的断层破碎带F4位于矿体开采引起移动变形区域,岩体移动变形引起的水平应力释放导致断层破碎带F4与近矿角页岩A2分界面出现错动台阶;?340 m阶段运输巷变形与破坏机制矿体开采,引起巷道围岩向采空区方向移动变形和开采诱发的断层破碎带滑移活化直接造成顶板沿陡倾结构面垮塌两部分,?410 m阶段运输巷变形与破坏机制是受开采诱发的?340 m水平及以上断层破碎带岩体下滑活化引起的挤压变形作用。

关键词: 采矿工程, 断层破碎带, 破坏机制, 悬臂梁, 崩落法开采

Abstract: The field survey, numerical simulation and geomechanical analysis methods are applied in studying the fault effect on the deformation and failure of surrounding rock in the laneway, such as the ?340 m and ?410 m stages of the transportation lanes that are located at the eastern part of the Jinshandian iron mine. The results show that the deformation and damage of roadway near the fault fracture zone affected by mining is serious. The failure modes of surrounding rock include roof collapse, asymmetric subsidence and deformation of the roof, spalling induced by the deformation of surrounding rock in tunnel, horizontal tensile cracks of roadslides, etc. The fault-fracture zone F4, where the transportation lane at ?340 m level, is located at the deformation zone of the ore body induced by mining. The horizontal stress release caused by the movement and deformation of rock body leads to a dislocation stair at the interface between the fault-fracture zone F4 and the hornfels A2 near the ore body. The deformation and failure mechanism of ?340 m level haulage roadway includes the surrounding rocks in tunnel move and deform towards the worked-out area induced by the mining and the slippage and activation of the fault-fracture zone caused by mining result in the collapse of the roof along the steep structure plane. The deformation and failure mechanism of the transport lane at the ?410 m stage is controlled by the squeezing deformation caused by the slip activation of the rock mass at the fault-fracture zone at the ?340 m level and above depth.

Key words: mining engineering, fault-fracture zone, failure mechanism, cantilever beam, caving mining

中图分类号: 

  • TD802
[1] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[2] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[3] 宋文成, 梁正召, . 承压水上开采倾斜底板破坏特征 与突水危险性分析[J]. 岩土力学, 2020, 41(2): 624-634.
[4] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[5] 朱斯陶, 姜福兴, 朱海洲, 张俊杰, 连鸿全, 韩国庆, . 高应力区掘进工作面冲击地压事故发生机制研究[J]. 岩土力学, 2018, 39(S2): 337-343.
[6] 杨 琪,张友谊,刘华强,秦 华,. 一种气泡轻质土路基受载-破坏模型试验[J]. , 2018, 39(9): 3121-3129.
[7] 马 凯,尹立明,陈军涛,陈 明,王自起,崔博强,. 深部开采底板隔水关键层受局部高承压水作用破坏理论分析[J]. , 2018, 39(9): 3213-3222.
[8] 郭昭胜,贺武斌,白晓红. 桩-承台-土复合受力体的拟静力模型试验[J]. , 2018, 39(9): 3321-3330.
[9] 马旭强,施锡林,尹洪武,杨春和,李银平,马洪岭,. 三轴压缩下含夹层盐岩破坏机制[J]. , 2018, 39(2): 644-650.
[10] 李 韬,徐奴文,戴 峰,李天斌,樊义林,李 彪,. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J]. , 2018, 39(2): 665-674.
[11] 滕尚永, 杨圣奇, 黄彦华, 田文岭, . 裂隙充填影响巴西圆盘抗拉力学特性试验研究[J]. 岩土力学, 2018, 39(12): 4493-4507.
[12] 贾金青,高军程,涂兵雄,张 磊,王海涛,高仁哲,. 深基坑中压力型预应力锚杆柔性支护结构的离心模型试验研究[J]. , 2017, 38(S2): 304-310.
[13] 陈龙龙,陈从新,夏柏如,夏开宗,付 华,邓洋洋,宋许根,孙朝燚,. 程潮铁矿东区地面塌陷机制及扩展机制初探[J]. , 2017, 38(8): 2322-2334.
[14] 唐礼忠,翦英骅,李地元,王 春,邓丽凡,陈 源. 基于微震矩张量的矿山围岩破坏机制分析[J]. , 2017, 38(5): 1436-1444.
[15] 武精科,阚甲广,谢生荣,谢福星,陈冬冬,. 深井高应力软岩沿空留巷围岩破坏机制及控制[J]. , 2017, 38(3): 793-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!