岩土力学 ›› 2019, Vol. 40 ›› Issue (7): 2563-2573.doi: 10.16285/j.rsm.2018.0552

• 基础理论与实验研究 • 上一篇    下一篇

玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究

冯君1, 2,王洋3,吴红刚4,赖冰1,谢先当1   

  1. 1. 西南交通大学 土木工程学院,四川 成都 610031;2. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610031; 3. 东南大学 土木工程学院,江苏 南京 210096;4. 中铁西北科学研究院有限公司,甘肃 兰州 730000
  • 收稿日期:2018-04-08 出版日期:2019-07-11 发布日期:2019-07-06
  • 通讯作者: 王洋,男,1992年生,博士研究生,主要从事FRP在岩土锚固方面的研究工作。E-mail: wy_0127@163.com E-mail:fengjun4316@163.com
  • 作者简介:冯君,男,1977年生,博士,副教授,主要从事岩土力学方面的教学与研究工作
  • 基金资助:
    国家自然科学基金项目(No. 51178402);中国中铁股份公司科技开发计划(2015-重点-32,中铁科研院(科研)字2015-KJ037-G006-03)

Field pullout tests of basalt fiber-reinforced polymer ground anchor

FENG Jun1, 2, WANG Yang3, WU Hong-gang4, LAI Bing1, XIE Xian-dang1   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 2. Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 3. School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China; 4. Northwest Research Institute Co., Ltd. of CREC, Lanzhou, Gansu 730000, China
  • Received:2018-04-08 Online:2019-07-11 Published:2019-07-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51178402), the Technology Development Plan of China Railway Corporation (2015-key-32, China Academy of Railway Sciences Corporation Limited (Scientific Research) 2015-KJ037-G006-03).

摘要: 玄武岩纤维复合材料(BFRP)锚杆与传统钢锚杆相比具有比强度高、耐腐蚀性强、与围岩协调变形性好等优点,是一种新型高性能纤维锚杆,在边坡加固领域的应用才刚刚起步。通过BFRP锚杆加固黄土边坡的现场拉拔试验,较系统地研究了BFRP锚固体系在不同锚杆直径、锚固长度下的工作性能,并通过现场开挖式剖析,分析了BFRP锚固体系的破坏模式。试验结果表明,破坏模式受控于锚固系统诸界面的相对强度,?12 mm和?16 mm锚杆体系为锚杆与灌浆体界面(第1界面)剪切破坏,?25 mm锚杆体系为灌浆体与土层界面(第2界面)滑移破坏;一定锚固条件下,增大锚杆直径可显著提高锚固体系的极限抗拔力;随着锚固长度的增加,极限抗拔力并非始终线性增大,而是增幅逐渐减弱,存在临界锚固长度;第1界面和第2界面平均黏结强度均随锚固长度的增大而减小,并给出了诸界面平均黏结强度的建议值,可供实际工程设计使用;杆体轴力沿锚固深度逐渐衰减,分布形态与受拉荷载大小、锚杆直径和锚固长度等有关;锚杆界面摩阻力分布服从随锚固深度先增大后减小的单峰形态,峰值多出现在锚固前端0.5 m范围内,同样受锚固长度和直径影响。建议今后进一步改善BFRP材料的抗剪性能以及BFRP锚杆表面形态设计和制作工艺。

关键词: BFRP锚杆, 黄土边坡, 现场试验, 破坏机制, 界面黏结强度

Abstract: Basalt fiber-reinforced polymer (BFRP) anchor, which has much higher tensile strength, better corrosion resistance and lighter weight than steel bar, is a new kind high performance fiber-reinforced anchor. However, its application in slope engineering is still at preliminary stage. In this study, a series of pull out tests for BFRP anchors were performed at a loess slope site, based on which the performances of BFRP anchor systems with different bolt diameter and anchorage length were studied. The failure modes of BFRP anchor system were investigated by examining the excavated anchors at the slope site. The test results show that the failure modes of anchor system depend on the relative strength of interfaces. The anchors with 12 mm and 16 mm diameters tend to fail in shear at the interface between bar and grout (the 1st interface), and 25 mm fail in shear at the interface between grout and surrounding soil (the 2nd interface). Under certain anchorage conditions, the increase in the bolt diameter can significantly improve the ultimate pullout load of the anchor system. With the increase of the anchorage length, the ultimate pullout force does not always increase linearly but with the increasing trend decreases gradually, showing the existence of a critical value in the anchorage length. The average bond strength of the interface between 1st and 2nd decreases with the increase of the anchor length. The recommended values for average bond strength of interfaces are also presented for practical engineering design. The axial force of the anchors gradually attenuates along the depth with its distribution pattern related to the magnitude of the tensile load, the diameter of the bolt and the length of the anchorage. The shear stress distribution, which increases first and then decreases with the anchorage depth, obeys the single peak shape with the peak value located within the range of 0.5 m at the front of the anchorage, also influencing by the length and diameter of the anchorage. It is suggested that the performance of shear resistance, the design of surface morphology design and fabrication process of BFRP anchor should be further improved in the future.

Key words: BFRP anchor, loess slope, field experiment, failure mechanism, interface bonding strength

中图分类号: 

  • TU 457
[1] 张晓磊, 冯世进, 李义成, 王雷, . 路基高架过渡段高铁运行引起的地表 振动现场试验研究[J]. 岩土力学, 2020, 41(S1): 187-194.
[2] 李任融, 孔纲强, 杨庆, 孙广超. 流速对桩−筏基础中能量桩换热效率 与热力耦合特性影响研究[J]. 岩土力学, 2020, 41(S1): 264-270.
[3] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[4] 杨峰, 何诗华, 吴遥杰, 计丽艳, 罗静静, 阳军生. 非均质黏土地层隧道开挖面稳定运动 单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419.
[5] 陆晨凯, 孔纲强, 孙广超, 陈斌, 殷高翔, . 桩−筏基础中能量桩热−力耦合特性现场试验[J]. 岩土力学, 2019, 40(9): 3569-3575.
[6] 吴爽爽, 胡新丽, 龚辉, 周昌, 徐楚, 王强, 应春业, . 3种模式下钻孔灌注桩桩-土剪切特性 现场试验研究[J]. 岩土力学, 2019, 40(7): 2838-2846.
[7] 余 瑜, 刘新荣, 刘永权, . 基坑锚索预应力损失规律现场试验研究[J]. 岩土力学, 2019, 40(5): 1932-1939.
[8] 李 驰, 王 硕, 王燕星, 高 瑜, 斯日古楞, . 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.
[9] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[10] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[11] 任连伟, 孔纲强, 郝耀虎, 刘汉龙, . 基于能量桩现场试验的土体综合热导率系数研究[J]. 岩土力学, 2019, 40(12): 4857-4864.
[12] 冯君, 王洋, 张俞峰, 黄林, 何长江, 吴红刚, . 玄武岩纤维与钢筋锚杆锚固性能现场对比试验研究[J]. 岩土力学, 2019, 40(11): 4185-4193.
[13] 叶帅华, 赵壮福, 朱彦鹏, . 框架锚杆支护黄土边坡大型振动台模型试验研究[J]. 岩土力学, 2019, 40(11): 4240-4248.
[14] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[15] 王炳龙,梅 祯,肖军华. 土工格室补强路基整治路基病害的试验研究[J]. , 2018, 39(S1): 325-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!