岩土力学 ›› 2020, Vol. 41 ›› Issue (9): 3056-3065.doi: 10.16285/j.rsm.2019.1675
陈国兴1, 2,李磊1, 2,丁杰发1, 2,赵凯1, 2
CHEN Guo-xing1, 2, LI Lei1, 2, DING Jie-fa1, 2, ZHAO Kai1, 2
摘要: 地震基岩深度和土体动力本构模型的选取对核岛场地地震效应评价结果的合理性具有重要影响。以拟建某沿海核电厂深度470 m沉积土夹火山岩层场地的3个钻孔剖面为研究对象,采用一维等效线性波传分析(ELA)法、基于Matasovic本构模型和Davidenkov-Chen-Zhao(DCZ)本构模型的一维非线性分析(NLA)法,选取不同剪切波速的5个岩土层作为地震基岩,研究了输入地震动特性、地震基岩深度和土体动力本构模型的选取对巨厚沉积土夹火山岩层场地非线性地震反应特性的影响。结果表明:(1)以浅层硬岩夹层或深部土层作为地震基岩,NLA法计算的5%阻尼比的地表谱加速度SA的短周期部分较之ELA法的计算值大,但两者计算的地表SA谱的长周期部分几乎一致;(2)基于Matasovic模型和DCZ模型的NLA法计算的地表SA谱谱形和峰值加速度随深度的变化趋势基本一致;(3)从NLA法计算的地表峰值加速度和累积绝对速度而言,以剪切波速约2 500 m/s的浅层硬岩夹层作为地震基岩是适宜的。
中图分类号:
[1] | 巴振宁, 刘世朋, 吴孟桃, 梁建文, . 饱和土中周期排列管桩对平面SV波 隔振的解析求解[J]. 岩土力学, 2021, 42(3): 627-637. |
[2] | 周凤玺, 马强, 周志雄, . 二维地基中空沟−波阻板联合隔振屏障分析[J]. 岩土力学, 2020, 41(12): 4087-4092. |
[3] | 许紫刚, 杜修力, 许成顺, 张驰宇, 蒋家卫. 地下结构地震反应分析中场地瑞利阻尼 构建方法比较研究[J]. 岩土力学, 2019, 40(12): 4838-4847. |
[4] | 高冉, 叶剑红, . 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3896. |
[5] | 杨文波, 邹涛, 涂玖林, 谷笑旭, 刘雨辰, 晏启祥, 何川. 高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644. |
[6] | 赵密, 欧阳文龙, 黄景琦, 杜修力, 赵旭, . P波作用下跨断层隧道轴线地震响应分析[J]. 岩土力学, 2019, 40(9): 3645-3655. |
[7] | 蒋若辰, 徐奴文, 戴峰, 周家文. 基于快速行进迎风线性插值的微震定位算法研究[J]. 岩土力学, 2019, 40(9): 3697-3708. |
[8] | 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331. |
[9] | 张晓超 ,黄润秋 ,许 模 ,裴向军 ,韩祥森 ,宋丽娟 ,张帆宇,. 石碑塬滑坡黄土液化特征及其影响因素研究[J]. , 2014, 35(3): 801-810. |
[10] | 于通顺, 王海军. 循环荷载下复合筒型基础地基孔隙水压力变化及液化分析[J]. , 2014, 35(3): 820-826. |
[11] | 范留明. 非均匀层状介质一维波动方程精确解的有限差分算法[J]. , 2013, 34(9): 2715-2720. |
[12] | 徐学勇 ,汪 稔 ,王新志 ,李 炜 . 饱和钙质砂爆炸响应动力特性试验研究[J]. , 2012, 33(10): 2953-2959. |
[13] | 陈令坤 ,蒋丽忠 ,陶 磊 ,余志武 . 考虑桩-土作用的高速列车-桥梁地震响应分析[J]. , 2012, 33(10): 3162-3170. |
[14] | 邹德高,徐 斌,孔宪京. 瑞利阻尼系数确定方法对高土石坝地震反应的影响研究[J]. , 2011, 32(3): 797-803. |
[15] | 张向东,曹启坤,潘宇. 二灰改良土动力特性试验研究[J]. , 2010, 31(8): 2560-2564. |
|