岩土力学 ›› 2020, Vol. 41 ›› Issue (8): 2627-2635.doi: 10.16285/j.rsm.2019.1782

• 基础理论与实验研究 • 上一篇    下一篇

断层破碎带剪切作用下力链结构及演化 光弹试验研究

展亚太1,王金安1, 2,李飞1,杨柳1   

  1. 1. 北京科技大学 土木与资源工程学院,北京 100083;2. 北京科技大学 金属矿山高效开采与安全教育部重点实验室,北京 100083
  • 收稿日期:2019-10-15 修回日期:2019-12-23 出版日期:2020-08-14 发布日期:2020-10-17
  • 通讯作者: 王金安,男,1958年生,博士,教授,博士生导师,主要从事岩石力学与工程稳定性方面的教学与研究工作。E-mail: wja@ustb.edu.cn E-mail:zhanyatai@163.com
  • 作者简介:展亚太,男,1990年生,博士研究生,主要从事岩石力学与工程稳定性方面的研究工作。
  • 基金资助:
    国家重点基础研究发展计划(十三五)项目(No. 2017YFC1503104)

Photo-elastic experimental study on force chain structure and evolution of fault fracture zone under shear

ZHAN Ya-tai1, WANG Jin-an1, 2, LI Fei1, YANG Liu1   

  1. 1.School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2019-10-15 Revised:2019-12-23 Online:2020-08-14 Published:2020-10-17
  • Supported by:
    This work was supported by the National Key Research & Development Programs of China (2017YFC1503104).

摘要: 断层破碎带颗粒介质体系中力链形成机制及其演化规律,是研究含破碎带断层蠕滑、黏滑以及地震等地质灾害发生的重要基础。借助颗粒体双轴加载双向流动光弹试验装置,对断层破碎带剪切作用下的宏观力学特性、破碎带中光弹力链网络结构及演化、力链空间分布及强度等特征进行研究。结果表明:(1)断层破碎带中,岩体颗粒之间通过力链传递力的相互作用;破碎带与断层诱导裂隙带之间存在易滑段与不易滑段,揭示了剪切作用下破碎带空间变形非均匀特征;破碎带中岩体颗粒物质的重新排列,引起易滑段与不易滑段的动态演化。(2)破碎带中较大粒径角砾岩颗粒承载了断层上下盘之间的主要挤压及摩擦力,起到了骨架支撑的作用;随着剪力的增长,强力链方向发生偏转,向竖直方向靠拢。(3)处于高应力状态的断层远离破碎带边缘位置岩体颗粒更容易发生破坏、碎裂、重新排列,从而引起强力链空间方位的变化;随着竖向荷载的增大,强力链空间方位由明显各向非均匀性向各向均匀性转变。(4)竖向荷载变化对断层破碎带中力链比例和颗粒接触力分布频率影响较小,对力链空间分布及强度影响较大。

关键词: 断层破碎带, 剪切滑动, 光弹试验, 力链演化

Abstract: The formation mechanism and evolution of force chain in the granular media system of fault fracture zone are important foundations for studying the occurrence of geological disasters such as creep, stick-slip and earthquake. By photo-elastic test device of particles under biaxial loading and bilateral flowing conditions, the macro-mechanical characteristics, the network structure and evolution, the spatial distribution and strength of force chain in the fracture zone are studied under shear. The results show that in fault fracture zone, the interaction between particles of rock mass is transmitted through the force chain. There are easy sliding section and non-easy sliding section between the fracture zone and the fault-induced fracture zone, which reveals the non-uniform characteristics of spatial deformation of the fracture zone under shear. The rearrangement of rock particles in the fracture zone results in the dynamic evolution of easy sliding sections and non-easy sliding sections. The larger-sized breccia particles in the fracture zone carry the main compression and friction between the upper and lower plates of the fault, which plays the role of “skeleton support”. With the increase of shear force, the direction of the strong force chain is deflected in the vertical direction. Rock particles near the middle of the fracture zone are more likely to be destroyed, fractured and rearranged when the fault is in a high stress state, which results in the change of spatial orientation of strong force chain. With the increase of vertical load, the spatial orientation of strong force chain changes from obvious anisotropy to uniform isotropy. The change of vertical load has little effect on the force chain ratio and the distribution of particle contact force frequency in fault fracture zone, but has great influence on the spatial distribution and strength of the force chain.

Key words: fault fracture zone, shear slip, photo-elastic experiment, force chain evolution

中图分类号: 

  • TU 452
[1] 杨括宇, 陈从新, 夏开宗, 宋许根, 张伟, 张褚强, 王田龙. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.
[2] 张庆艳, 陈卫忠, 袁敬强, 刘奇, 荣驰, . 断层破碎带突水突泥演化特征试验研究[J]. 岩土力学, 2020, 41(6): 1911-1922.
[3] 王金安,梁 超,庞伟东, . 颗粒体双轴加载双向流动力链演化光弹试验研究[J]. , 2016, 37(11): 3041-3047.
[4] 王德明,张庆松,张 霄,王 凯,谭英华. 断层破碎带隧道突水突泥灾变演化模型试验研究[J]. , 2016, 37(10): 2851-2860.
[5] 房营光 ,侯明勋 ,谷任国 ,冯德銮 ,陈 平,. 基于颗粒介质的桩承式路堤土拱效应试验分析[J]. , 2015, 36(S1): 55-60.
[6] 李 鹏,张庆松,张 霄,李术才,张伟杰,李梦天,王 倩. 基于模型试验的劈裂注浆机制分析[J]. , 2014, 35(11): 3221-3230.
[7] 李 达 ,李永生 ,罗占夫 . 复杂条件下隧道开挖循环进尺优化方法研究[J]. , 2013, 34(2): 498-502.
[8] 孟 刚, 余志雄. 顺层岩质边坡稳定性影响因素分析[J]. , 2005, 26(S2): 52-56.
[9] 许东俊. 软弱岩体流变特性及长期强度测定法[J]. , 1980, 2(1): 37-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[2] 祝云华,刘新荣,舒志乐. 对“‘深埋隧道开挖围岩失稳突变模型研究’讨论”的答复[J]. , 2009, 30(10): 3215 -3216 .
[3] 朱珍德,李道伟,蒋志坚,刘金辉,杨永杰. 温度循环作用下深埋隧洞围岩细观结构的定量描述[J]. , 2009, 30(11): 3237 -3241 .
[4] 杨有莲,朱俊高,余 挺,吴晓铭. 土与结构接触面力学特性环剪试验研究[J]. , 2009, 30(11): 3256 -3260 .
[5] 张民生,刘红军,李晓东,贾永刚,王秀海. 波浪作用下黄河口粉土液化与“铁板砂”形成机制的模拟试验研究[J]. , 2009, 30(11): 3347 -3351 .
[6] 杨育文. 土钉墙计算方法的适用性[J]. , 2009, 30(11): 3357 -3364 .
[7] 朱训国,杨 庆. 全长注浆岩石锚杆中性点影响因素分析研究[J]. , 2009, 30(11): 3386 -3392 .
[8] 马 青,赵均海,魏雪英. 基于统一强度理论的巷道围岩抗力系数研究[J]. , 2009, 30(11): 3393 -3398 .
[9] 蔚立元,李术才,徐帮树. 舟山灌门水道海底隧道钻爆法施工稳定性分析[J]. , 2009, 30(11): 3453 -3459 .
[10] 徐东升,汪 稔,孟庆山,胡明鉴. 海相淤泥软土地基强夯置换砂桩试验分析[J]. , 2009, 30(12): 3831 -3836 .