岩土力学 ›› 2020, Vol. 41 ›› Issue (7): 2441-2452.doi: 10.16285/j.rsm.2019.1857

• 岩土工程研究 • 上一篇    下一篇

高速岩质滑坡滑面滑动摩擦特性研究——以王山 抓口寺滑坡为例

罗刚1,张辉傲1,马国涛1,周海文1,胡卸文1, 2,王文健3,王文沛4   

  1. 1. 西南交通大学 地球科学与环境工程学院,四川 成都 611756;2. 西南交通大学 高速铁路运营安全空间信息技术国家地方联合共建工程实验室,四川 成都 611756;3. 西南交通大学 摩擦学研究所,四川 成都 610031;4. 中国地质环境监测院,北京 100081
  • 收稿日期:2019-11-05 修回日期:2020-01-07 出版日期:2020-07-10 发布日期:2020-09-20
  • 作者简介:罗刚,男,1984年生,博士,副教授,硕士生导师,主要从事地质灾害的研究工作。
  • 基金资助:
    国家重点研发计划(No. 2018YFC1505404);国家自然科学基金(No. 41502299,No. 41672283);四川省科技计划项目(No. 2019YFG0001)。

Study on sliding tribological characteristics of the sliding plane of a high-speed rockslide: taking the Wangshan-Zhuakousi rockslide as instance

LUO Gang1, ZHANG Hui-ao1, MA Guo-tao1, ZHOU Hai-wen1, HU Xie-wen1, 2, WANG Wen-jian3, WANG Wen-pei4   

  1. 1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; 2. Engineering Laboratory Combined with National and Local of Spatial Information Technology of High Speed Railway Operation Safety, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; 3. Tribology Research Institute, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; 4. China Institute of Geological Environment Monitoring, Beijing 100081, China
  • Received:2019-11-05 Revised:2020-01-07 Online:2020-07-10 Published:2020-09-20
  • Supported by:
    This work was supported by the National Key Research and Development Program (2018YFC1505404), the National Natural Science Foundation of China (41402266, 41672283) and the Sichuan Science and Technology Planning Project (2019YFG0001).

摘要: 高速岩质滑坡滑面摩擦特性是其运动机制的重要方面,目前尚未研究透彻。以四川省峨眉山市的王山?抓口寺滑坡为研究对象,通过野外地质调查和视频监控,获取了滑坡工程地质条件和滑坡运动特征。利用销盘式磨损仪对滑体(玄武岩)和滑面(凝灰岩)分别进行高速摩擦试验,分析其在干燥和饱水状态下的摩擦特性(动摩擦系数和微观磨损形貌)。结果表明:滑面(玄武岩和凝灰岩接触面)的动摩擦系数远小于滑体(玄武岩)的动摩擦系数;在试验条件下,无论饱水或干燥状态,滑面(玄武岩和凝灰岩接触面)的动摩擦系数与摩擦速率和法向压力均负相关;在试验条件下,无论饱水或干燥状态,滑体(玄武岩)的动摩擦系数与摩擦速率负相关,但与法向压力正相关;高速摩擦过程中,滑面的剪胀破裂会导致动摩擦系数瞬间增大。试验结论可作为含软弱夹层的硬岩滑坡形成高速运动的一种原因,同时可为玄武岩和凝灰岩地区高速岩质滑坡的防灾减灾提供设计参数。

关键词: 高速岩质滑坡, 凝灰岩, 玄武岩, 滑动摩擦试验, 摩擦特性

Abstract: In order to characterize the transportation mechanism of the high-speed rockslide, it is significant to investigate the tribological characteristics of the sliding surface. However, the investigation of tribological characteristics has not been thoroughly revealed. Taking the Wangshan-Zhuakousi rockslide in Emeishan city of Sichuan province as instance, the engineering geological conditions and the motion characteristics of the rockslide were obtained through field geological survey and video surveillance. Based on the high-speed friction experiments of the rockslide masses (basalt) and the sliding plane (tuff) by the pin and disc worn instrument, the tribological characteristics (dynamic friction coefficient and microscopic wear surface appearance) were analyzed under dry and saturated conditions. The results show that: the dynamic friction coefficient of the sliding plane (the interface between basalt and tuff) is much smaller than that of basalts. Regardless of the dry and saturated conditions, the dynamic friction coefficient of the sliding plane (the interface between basalt and tuff) is negatively correlated with both the frictional velocities and the normal pressures in the experiments. Regardless of the dry and saturated conditions, the dynamic friction coefficient of sliding mass (basalt) is also negatively correlated with the frictional velocities, whereas it is positively correlated with the normal pressure in the experiments. In the high-speed friction process, the dynamic friction coefficient is increased instantly due to the dilative shear failure of the sliding surface. The experimental results can be adopted for explaining the high-speed motion of the hard rockslides containing the weak interlayers. In addition, the findings in this study can provide essential design parameters for disaster prevention and high-speed rockslide mitigation in the tuff and basalt areas.

Key words: high-speed rockslide, tuff, basalt, high-speed friction experiment, frictional characteristics

中图分类号: 

  • TU 455
[1] 张传庆, 刘振江, 张春生, 周辉, 高阳, 侯靖, . 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496.
[2] 郎颖娴, 梁正召, 段 东, 曹志林, . 基于CT试验的岩石细观孔隙模型重构与并行模拟[J]. 岩土力学, 2019, 40(3): 1204-1212.
[3] 崔光耀, 祁家所, 王明胜, . 片理化玄武岩隧道围岩大变形控制现场试验研究[J]. 岩土力学, 2018, 39(S2): 231-237.
[4] 王闵闵,鹿 群,郭少龙,高 萌,沈仲涛,. 循环荷载作用下纤维水泥土动力特性[J]. , 2018, 39(5): 1753-1760.
[5] 罗 刚,梅雪峰,师陆冰,胡卸文,金 涛,王文健,马洪生,. 石灰岩高速滚动摩擦特性[J]. , 2018, 39(2): 474-482.
[6] 马芹永,高常辉,. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. , 2018, 39(11): 3921-3928.
[7] 裴书锋,冯夏庭,张建聪,王鹏飞,江 权,周扬一,郝宪杰,刘俊峰,. 高边坡坝基柱状节理玄武岩开挖卸荷时效松弛特性[J]. , 2018, 39(10): 3743-3754.
[8] 许 江,马天宇,大久保诚介,彭守建,汤 杨,陈灿灿,王 哲. 不同围压下岩石广义应力松弛特性试验研究[J]. , 2017, 38(S2): 57-66.
[9] 张海龙,许 江,大久保诚介,羽柴公博,福井胜则,彭守建,. 河津凝灰岩广义应力松弛特性及数值模拟研究[J]. , 2017, 38(4): 1089-1096.
[10] 江 权,崔 洁,冯夏庭,刘国锋,王百林,刘 挺,吕勇刚,. 玄武岩力学参数的随机性统计与概率分布估计[J]. , 2017, 38(3): 784-792.
[11] 邹宗兴 ,唐辉明 ,熊承仁 ,刘 晓 ,倪卫达 ,葛云峰,. 高速岩质滑坡启动弹冲加速机制及弹冲速度计算 ——以武隆县鸡尾山滑坡为例[J]. , 2014, 35(7): 2004-2012.
[12] 田 昊,李术才,薛翊国,邱道宏,苏茂鑫,王 凯. 基于钻进能量理论的隧道凝灰岩地层界面识别及围岩分级方法[J]. , 2012, 33(8): 2457-2464.
[13] 陈 榕,栾茂田,赵 维,徐晓艳,郝冬雪. 土工格栅拉拔试验及筋材摩擦受力特性研究[J]. , 2009, 30(4): 960-964.
[14] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013-3019.
[15] 徐 超,廖星樾,叶观宝,李志斌. 土工合成材料界面摩擦特性的室内剪切试验研究[J]. , 2008, 29(5): 1285-1289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[3] 王 刚,蒋宇静,王渭明,李廷春. 新型数控岩石节理剪切渗流试验台的设计与应用[J]. , 2009, 30(10): 3200 -3209 .
[4] 赵成刚,蔡国庆. 非饱和土广义有效应力原理[J]. , 2009, 30(11): 3232 -3236 .
[5] 孔位学,芮勇勤,董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. , 2009, 30(11): 3278 -3282 .
[6] 王 威,王水林,汤 华,周平根. 基于三维GIS的滑坡灾害监测预警系统及应用[J]. , 2009, 30(11): 3379 -3385 .
[7] 周 琦,刘汉龙,顾长存. 真空预压条件下地下水位和出水量现场测试研究[J]. , 2009, 30(11): 3435 -3440 .
[8] 王 飞,王 媛,倪小东. 渗流场随机性的随机有限元分析[J]. , 2009, 30(11): 3539 -3542 .
[9] 毛昶熙,段祥宝,吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. , 2009, 30(12): 3705 -3709 .
[10] 董 诚,郑颖人,陈新颖,唐晓松. 深基坑土钉和预应力锚杆复合支护方式的探讨[J]. , 2009, 30(12): 3793 -3796 .