岩土力学 ›› 2021, Vol. 42 ›› Issue (4): 932-942.doi: 10.16285/j.rsm.2020.1170

• 基础理论与实验研究 • 上一篇    下一篇

不同高温作用后石灰岩物理与动力特性试验研究

平琦1, 2, 3,苏海鹏2, 3,马冬冬2, 3,张号2, 3,张传亮2, 3   

  1. 1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001; 2. 安徽理工大学 矿山地下工程教育部工程研究中心,安徽 淮南 232001;3. 安徽理工大学 土木建筑学院,安徽 淮南 232001
  • 收稿日期:2020-08-06 修回日期:2020-10-06 出版日期:2021-04-12 发布日期:2021-04-25
  • 作者简介:平琦,男,1975年生,博士(后),教授,硕士生导师,主要从事岩石动力学和爆破理论与技术方面的教学与研究工作。
  • 基金资助:
    国家自然科学基金(No. 52074005,No. 52074006,No. 51674008);安徽省自然科学基金(No. 1808085ME134);安徽省博士后基金 (No. 2015B058)。

Experimental study on physical and dynamic mechanical properties of limestone after different high temperature treatments

PING Qi1, 2, 3, SU Hai-peng2, 3, MA Dong-dong2, 3, ZHANG Hao2, 3, ZHANG Chuan-liang2, 3   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 2. Engineering Research Center of Underground Mine Construction of Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 3. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Received:2020-08-06 Revised:2020-10-06 Online:2021-04-12 Published:2021-04-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52074005, 52074006, 51674008), the Anhui Natural Science Foundation (1808085ME134) and the Anhui Postdoctoral Science Foundation (2015B058).

摘要: 为研究石灰岩物理和动力学性质受高温作用影响的规律,对常温和经历100~800 ℃高温作用后石灰岩试件进行物理参数测试,利用SHPB试验装置开展相同加载条件冲击压缩试验。研究结果表明:石灰岩主要矿物成分为方解石和白云石,常温石灰岩结构致密,随作用温度升高,白云石逐渐分解形成微米级颗粒,试件颜色由灰白色逐渐变浅至白色,体积增大,质量、密度和纵波波速减小,且变化速率与作用温度密切相关。不同高温作用后动压缩应力–应变曲线变化规律基本一致;动抗压强度和动弹性模量随作用温度升高表现为先小幅增加后大幅降低,与作用温度呈负相关二次函数关系,200 ℃时最大;动应变和应变率与作用温度呈正相关二次函数关系;破坏形态表现为由脆性向延脆性破坏转化,200 ℃时破坏程度最小,随作用温度升高破坏程度加剧、碎块粒径逐渐变小,800 ℃时碎块基本呈现为粉末状。

关键词: 岩石动力学, 高温作用, 动抗压强度, 动应变, 动弹性模量, 分离式Hopkinson压杆(SHPB)

Abstract: To investigate the effect of high temperature on physical and dynamic mechanical properties of limestone, basic physical tests were conducted on limestone specimens at room temperature and high temperature treatment from 100 ℃ to 800 ℃. Moreover, dynamic impact compression tests under the same loading conditions were also conducted using SHPB test device. Test results indicate that the main mineral composition of limestone is calcite and dolomite. At room temperature, the limestone has a compact structure. With the increase of treating temperature, the dolomite gradually decomposes into micro-sized particles, and the surface color of test specimens gradually changes from off-white to white. Moreover, the volume of test specimens increases, while its mass, density and P-wave velocity decrease. These variation rates are closely related to the temperature. Dynamic compression stress-strain curves of limestone specimens under different high temperatures are basically consistent. A small increase followed by a significant decrease can be observed for both the dynamic compressive strength and dynamic elastic modulus with the increase of the temperature. An obvious negative quadratic function relationship is also found between these dynamic parameters and the treating temperature, and the maximum value is observed at 200 ℃. However, parameters including the dynamic strain and strain rate of test specimens, and the treating temperature are in a positive quadratic function relationship. The failure modes of specimens transit from brittle to ductile brittle, and damage degree is the lowest at 200 ℃. The damage degree increases with the increase of temperature, and the size of limestone fragments gradually decreases, which basically becomes powder at 800 ℃.

Key words: rock dynamics, high temperature treatment, dynamic compressive strength, dynamic strain, dynamic elastic modulus, split Hopkinson pressure bar (SHPB)

中图分类号: 

  • TU 451
[1] 雷华阳, 许英刚, 缪姜燕, 刘旭. 动渗耦合作用下软黏土动力特性试验研究[J]. 岩土力学, 2021, 42(3): 601-610.
[2] 王凯兴, 窦林名, 潘一山, OPARIN V N . 块系岩体非协调动力响应特征试验研究[J]. 岩土力学, 2020, 41(4): 1227-1234.
[3] 赵国彦, 李振阳, 吴浩, 王恩杰, 刘雷磊. 含非贯通裂隙砂岩的动力破坏特性研究[J]. 岩土力学, 2019, 40(S1): 73-81.
[4] 孟庆山, 范 超, 曾卫星, 余克服, . 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1): 183-190.
[5] 庄心善, 王俊翔, 王 康, 李 凯, 胡 智. 风化砂改良膨胀土的动力特性研究[J]. 岩土力学, 2018, 39(S2): 149-156.
[6] 陈瑞锋,田高源,米栋云,董晓强,. 赤泥改性黄土的基本工程性质研究[J]. , 2018, 39(S1): 89-97.
[7] 年廷凯,焦厚滨,范 宁,郭兴森,贾永刚,. 南海北部陆坡软黏土动力应变-孔压特性试验[J]. , 2018, 39(5): 1564-1572.
[8] 王闵闵,鹿 群,郭少龙,高 萌,沈仲涛,. 循环荷载作用下纤维水泥土动力特性[J]. , 2018, 39(5): 1753-1760.
[9] 刘 杰,雷 岚,王瑞红,王 飞,王 连,肖 蕾. 冻融循环中低应力水平加卸载作用下砂岩动力特性研究[J]. , 2017, 38(9): 2539-2550.
[10] 黄 娟,丁祖德,袁铁映,赵 丹,彭立敏,. 循环荷载作用下泥炭质土的动变形特性试验研究[J]. , 2017, 38(9): 2551-2558.
[11] 陈乐求,张家生,陈俊桦,陈积光,. 水泥改良泥质板岩粗粒土的静动力特性试验[J]. , 2017, 38(7): 1903-1910.
[12] 邓华锋,胡 玉,李建林,王 哲,张小景,张恒宾. 循环荷载的频率和幅值对砂岩动力特性的影响[J]. , 2017, 38(12): 3402-3409.
[13] 尹 松,孔令伟,杨爱武,穆 坤,. 花岗岩残积土填料路用工程特性室内试验研究[J]. , 2016, 37(S2): 287-293.
[14] 蔡 灿 ,伍开松 ,廉 栋 ,袁晓红,. 单齿冲击作用下破岩机制分析[J]. , 2015, 36(6): 1659-1666.
[15] 赵光明 ,马文伟 ,孟祥瑞 , . 动载作用下岩石类材料破坏模式及能量特性[J]. , 2015, 36(12): 3598-3605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鸿飞,程效军,高 攀,周鑫鑫. 隧道衬砌空洞探地雷达图谱正演模拟研究[J]. , 2009, 30(9): 2810 -2814 .
[2] 范庆来,栾茂田,刘占阁. 软土中T型触探仪贯入阻力的数值模拟[J]. , 2009, 30(9): 2850 -2854 .
[3] 张安康,陈士海,杜荣强,魏海霞. 岩石类材料的能量基率相关弹塑性损伤模型[J]. , 2010, 31(S1): 207 -210 .
[4] 陈 瑜,曹 平,蒲成志,刘业科,李 娜. 水-岩作用对岩石表面微观形貌影响的试验研究[J]. , 2010, 31(11): 3452 -3458 .
[5] 赵延喜,徐卫亚. 基于AHP和模糊综合评判的TBM施工风险评估[J]. , 2009, 30(3): 793 -798 .
[6] 张其一,栾茂田. 复合加载情况下非均质地基上条形基础的极限承载力研究[J]. , 2009, 30(5): 1281 -1286 .
[7] 王俊卿,李 靖,李 琦,陈 立. 黄土高边坡稳定性影响因素分析 ——以宝鸡峡引水工程为例[J]. , 2009, 30(7): 2114 -2118 .
[8] 龚彦峰,张俊儒. 隧道单层衬砌设计方法研究及应用[J]. , 2011, 32(4): 1062 -1068 .
[9] 常方强 ,贾永刚. 黄河口不同强度粉土液化特性的试验研究[J]. , 2011, 32(9): 2692 -2696 .
[10] 陈 勇 ,柏建彪 ,朱涛垒 ,闫 帅 ,赵社会 ,李学臣 . 沿空留巷巷旁支护体作用机制及工程应用[J]. , 2012, 33(5): 1427 -1432 .