岩土力学 ›› 2021, Vol. 42 ›› Issue (6): 1705-1712.doi: 10.16285/j.rsm.2020.1606

• 岩土工程研究 • 上一篇    下一篇

常泰长江大桥施工阶段大型沉井基础沉降变形分析

郭明伟1,马欢1, 2,杨忠明3,王斌4,董学超1, 5,王水林1   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 安徽理工大学 土木建筑学院,安徽 淮南 232001;3. 江苏省交通工程建设局,江苏 南京 210004;4. 中南勘察基础工程有限公司,湖北 武汉 430081;5. 中国科学院大学,北京 100049
  • 收稿日期:2020-10-29 修回日期:2021-03-04 出版日期:2021-06-11 发布日期:2021-06-16
  • 作者简介:郭明伟,男,1981年生,博士,副研究员,硕士生导师,主要从事岩土体稳定性分析方面的研究。
  • 基金资助:
    国家自然科学基金(No.51674239);2019年度交通运输行业重点科技项目(No.2019-MS1-011)。

Settlement analysis of large open caisson foundation at construction stage of Changtai Yangtze River Bridge

GUO Ming-wei1, MA Huan1, 2, YANG Zhong-ming3, WANG Bin4, DONG Xue-chao1, 5, WANG Shui-lin1   

  1. 1. State Key Laboratory of Geotechnical Mechanics and Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan, Anhui 232001, China; 3. Jiangsu Provincial Transportation Engineering Construction Bureau, Nanjing, Jiangsu 210004, China; 4. Central South Exploration & Foundation Engineering Co., Ltd., Wuhan, Hubei 430081, China; 5. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-29 Revised:2021-03-04 Online:2021-06-11 Published:2021-06-16
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674239) and the Scientific and Technological Key Projects in Transportation Industry 2019(2019-MS1-011).

摘要: 随着我国大跨度桥梁工程建设中沉井基础的规模越来越大,大型沉井基础的整体沉降对高速铁路桥梁线型控制至关重要。以常泰长江大桥公铁两用大跨度斜拉桥主墩沉井基础为工程背景,详细分析了常泰长江大桥桥梁建设阶段沉井基础的整体沉降,并根据实际的沉井基础尺寸和地层分布,设计了对应的离心机模型试验,综合评估了该沉井基础在桥梁施工阶段的整体沉降变化特征。结果表明:在上部结构施工阶段,沉井整体变形可分为缓慢增长、急剧变形、趋于平稳3个阶段;当土体压缩模量依据实际受力状态取值时计算得到的整体沉降量与离心模型试验结果比较吻合;工程荷载施加完毕时,该沉井基础整体沉降量约为225 mm。该研究成果为常泰长江大桥主墩沉井基础设计提供了重要参考,并对类似沉井基础工程具有重要的借鉴意义。

关键词: 分层总和法, 压缩模量, 离心机模型试验, 沉降量

Abstract: With the increasing size of open caisson foundation in large bridge project in China, the overall settlement of large open caisson foundation is vital to the shape control of high-speed railway bridge. In this paper, by taking the open caisson foundation of long-span and rail-cum-road Changtai Yangtze River Bridge as the engineering background, the overall settlement of the sinking well foundation during the Changtai Yangtze River Bridge construction stage is comprehensively analyzed. In addition, based on the distribution of the stratum and the size of open caisson foundation, the corresponding centrifuge model tests are conducted. According the results of tests, it can be seen that the overall settlement of open caisson foundation can be divided into three stages: slow growth, sharp deformation and leveling off. In addition, the overall settlement calculated by the layered sum method with actual compression modulus of the soil is in good agreement with that of the centrifugal model test and the overall settlement of the open caisson foundation is about 220 mm when the construction stage is finished. This study provides an important reference for the design of open caisson foundation of Changtai Yangtze River Bridge and has referential value to similar open caisson foundation engineering.

Key words: layerwise summation method, compression modulus, centrifuge model test, settlement

中图分类号: 

  • TU445
[1] 王 涛, 刘斯宏, 郑守仁, 鲁 洋, . 掺复合浆液堆石料压缩特性试验研究[J]. 岩土力学, 2019, 40(4): 1420-1426.
[2] 谭国宏, 肖海珠, 杜 勋, 胡文军. 大跨度公铁合建斜拉桥主塔沉井基础沉降变形分析[J]. 岩土力学, 2019, 40(3): 1113-1120.
[3] 周亚东,邓 安,鹿 群, . 非饱和土一维大变形固结模型[J]. , 2018, 39(5): 1675-1682.
[4] 孔 洋,阮怀宁,黄雪峰, . 延安地区压实马兰黄土高压固结变形特性[J]. , 2018, 39(5): 1731-1736.
[5] 乐绍林,柏 巍,吴名江,林融冰,陈 进,赵亚峰,. 泥砂互混吹填土自重沉积及颗粒分布规律[J]. , 2017, 38(S1): 233-239.
[6] 穆 坤,孔令伟,张先伟,尹 松. 红黏土工程性状的干湿循环效应试验研究[J]. , 2016, 37(8): 2247-2253.
[7] 赵明志 ,罗 强 ,蒋良潍 ,张 良 ,孟伟超 , . 基于标准压缩模量和液限推求地基土全压力段压缩模量的分析方法[J]. , 2015, 36(7): 2073-2080.
[8] 杨建民 ,李 嘉,. 基坑底分层回弹量的实用计算方法[J]. , 2014, 35(5): 1413-1420.
[9] 董 城 ,冷伍明 ,李志勇 ,邹静蓉,. 重复荷载作用下粉性路基土累积塑性变形研究[J]. , 2014, 35(12): 3437-3442.
[10] 古海东 ,杨 敏,. 考虑土拱效应的疏排桩支护基坑内力和变形分析[J]. , 2014, 35(12): 3531-3540.
[11] 杨泽飞,魏 纲,林磊磊,张世民. 盾构法隧道施工工后横向地表总沉降研究[J]. , 2013, 34(S2): 338-343.
[12] 王洪新 . 考虑三维变形的柔性和刚性基础沉降计算方法[J]. , 2013, 34(7): 1874-1880.
[13] 陈福江,马建林,朱 林,乐大维. 考虑压缩模量深度效应的深厚软土桩基沉降计算[J]. , 2012, 33(S2): 167-172.
[14] 童立元 ,涂启柱 ,刘松玉 ,杜广印. 基于孔压静力触探测试的改进分层总和法在软基沉降预测中的应用研究[J]. , 2011, 32(S2): 679-682.
[15] 杨光华,王俊辉. 地基非线性沉降计算原状土切线模量法的推广和应用[J]. , 2011, 32(S1): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张鸿飞,程效军,高 攀,周鑫鑫. 隧道衬砌空洞探地雷达图谱正演模拟研究[J]. , 2009, 30(9): 2810 -2814 .
[2] 范庆来,栾茂田,刘占阁. 软土中T型触探仪贯入阻力的数值模拟[J]. , 2009, 30(9): 2850 -2854 .
[3] 张安康,陈士海,杜荣强,魏海霞. 岩石类材料的能量基率相关弹塑性损伤模型[J]. , 2010, 31(S1): 207 -210 .
[4] 王小军,屈耀辉,魏永梁,杨印海,达益正. 郑西客运专线湿陷性黄土区试验路堤的沉降观测与预测研究[J]. , 2010, 31(S1): 220 -231 .
[5] 陈 瑜,曹 平,蒲成志,刘业科,李 娜. 水-岩作用对岩石表面微观形貌影响的试验研究[J]. , 2010, 31(11): 3452 -3458 .
[6] 赵延喜,徐卫亚. 基于AHP和模糊综合评判的TBM施工风险评估[J]. , 2009, 30(3): 793 -798 .
[7] 张其一,栾茂田. 复合加载情况下非均质地基上条形基础的极限承载力研究[J]. , 2009, 30(5): 1281 -1286 .
[8] 王俊卿,李 靖,李 琦,陈 立. 黄土高边坡稳定性影响因素分析 ——以宝鸡峡引水工程为例[J]. , 2009, 30(7): 2114 -2118 .
[9] 常林越,王金昌,朱向荣. 多级线性荷载下饱和软黏土一维大应变固结解析解[J]. , 2009, 30(8): 2343 -2347 .
[10] 龚彦峰,张俊儒. 隧道单层衬砌设计方法研究及应用[J]. , 2011, 32(4): 1062 -1068 .