岩土力学 ›› 2021, Vol. 42 ›› Issue (7): 1774-1782.doi: 10.16285/j.rsm.2020.1899

• 基础理论与实验研究 • 上一篇    下一篇

温度对颗粒膨润土热传导特性的影响

胡云世1,徐云山2, 3,孙德安2,陈波1,曾召田4   

  1. 1. 衢州学院 建筑工程学院,浙江 衢州 324000;2. 上海大学 土木工程系,上海 200444;3. 福建工程学院 土木工程学院,福建 福州 350118; 4. 桂林理工大学 广西建筑新能源与节能重点实验室,广西 桂林 541004
  • 收稿日期:2020-12-21 修回日期:2021-03-24 出版日期:2021-07-12 发布日期:2021-07-15
  • 通讯作者: 徐云山,男,1990年生,博士,讲师,主要从事环境岩土工程的研究。E-mail: xuyunshanfj@163.com E-mail:jgxhys@qzu.zj.cn
  • 作者简介:胡云世,男,1966年生,硕士,教授,主要从事岩土工程的研究
  • 基金资助:
    国家自然科学基金项目(No. 42077229);福建工程学院科研启动基金项目(No. GY-Z21013);浙江省自然科学基金联合基金项目(No. LZY21D020001)

Temperature dependence of thermal conductivity of granular bentonites

HU Yun-shi1, XU Yun-shan2, 3, SUN De-an2, CHEN Bo1, ZENG Zhao-tian4   

  1. 1. College of Civil Engineering and Architecture, Quzhou University, Quzhou, Zhejiang 324000, China; 2. Department of Civil Engineering, Shanghai University, Shanghai 200444, China; 3. School of Civil Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China; 4. Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin, Guangxi 541004, China
  • Received:2020-12-21 Revised:2021-03-24 Online:2021-07-12 Published:2021-07-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42077229), the Initial Scientific Research Fund of Fujian University of Technology (GY-Z21013) and the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (LZY21D020001).

摘要: 颗粒膨润土作为优良的接缝和间隙回填材料,在高放废物深地质处置库中具有较大的应用前景。以颗粒高庙子膨润土为研究对象,采用热探针法测试颗粒膨润土在不同条件下的热传导性能,探讨了温度、干密度和含水率等因素的影响。试验结果表明:相同含水率和干密度下,粉末膨润土压制样的热传导系数大于颗粒膨润土压制样;相同含水率下,随着干密度的增大,粉末压制样和颗粒压制样之间的热传导系数差异渐小。温度越高,含水率越大,干密度越小,颗粒压制样热传导系数的温度效应越显著。相同干密度下,粉末压制样内集聚体间大孔隙的孔径较颗粒压制样的孔径要小,更有利于热量在土中的传递,其热传导系数也就更大;随着干密度的增大,颗粒压制样内集聚体间孔隙减少,削弱了水汽潜热传输的影响,温度效应有所减弱。

关键词: 颗粒膨润土, 回填材料, 热传导系数, 温度效应, 水汽潜热传输

Abstract: As an excellent backfill material of the joints and gaps in high-level radioactive waste disposal repository, granular bentonites have a great application prospect. The thermal conductivity of granular GMZ bentonite was studied compared with compacted powder bentonite, using a thermal probe method under variable parameters including temperature, dry density and water content. The test results show that at the same condition, the thermal conductivity of compacted powder bentonite is higher than that of granular bentonite. With increasing the dry density, such difference in the thermal conductivity has decreased at constant water content. Temperature effect on the thermal conductivity of granular bentonite has increased with the increasing temperature and water content, as well as decreasing dry density. One possible explanation is that the size of inter-aggregate pores of compacted powder bentonite specimens is larger than those of compacted granular bentonite specimens at the same dry density, which causes it more conducive to the heat transfer within the compacted powder bentonite specimen, consequently its thermal conductivity is larger than that of granular bentonite specimen. As the dry density increases, the inter-aggregate pores of granular bentonites decrease, which weakens the influence of the latent heat transfer of vapor and thus reduces the temperature effect.

Key words: granular bentonite, backfill material, thermal conductivity, temperature effect, latent heat transfer

中图分类号: 

  • TU 443
[1] 骆赵刚, 汪时机, 杨振北, . 膨胀土湿干胀缩裂隙演化及其定量分析[J]. 岩土力学, 2020, 41(7): 2313-2323.
[2] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45.
[3] 宋勇军, 杨慧敏, 张磊涛, 任建喜. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.
[4] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能时效性试验研究[J]. 岩土力学, 2019, 40(11): 4324-4330.
[5] 谢敬礼,马利科,高玉峰,曹胜飞,刘月妙. 北山花岗岩岩屑-膨润土混合材料导热性能研究[J]. , 2018, 39(8): 2823-2828.
[6] 陈志国,唐朝生,叶为民,王德银,王 鹏,孙凯强,施 斌,. 水-力耦合条件下膨润土-砂混合物的体变特性研究[J]. , 2017, 38(4): 1041-1051.
[7] 张虎元,彭 宇,王学文,赵秉正,刘 平, . 冰-土混合法调配膨润土缓冲回填材料含水率研究[J]. , 2016, 37(S2): 144-150.
[8] 张 华,张 沣,袁 密, 申 科. 温度对国产滤纸率定曲线的影响研究[J]. , 2016, 37(S1): 274-280.
[9] 张 楠 ,夏胜全 ,侯新宇 , 王照宇,. 土热传导系数及模型的研究现状和展望[J]. , 2016, 37(6): 1550-1562.
[10] 李彦龙,王 俊,王铁行,. 温度梯度作用下非饱和土水分迁移研究[J]. , 2016, 37(10): 2839-2844.
[11] 周 嵩 ,陈益峰 ,张 勤 ,郑华康 ,周创兵 , . 非饱和膨润土的有效热传导特性模型[J]. , 2014, 35(4): 1041-1048.
[12] 马芹永,张经双,陈文峰,袁 璞. 人工冻土围压SHPB试验与冲击压缩特性分析[J]. , 2014, 35(3): 637-640.
[13] 姜德义,范金洋,陈 结,任 松,王 震,白月明. 盐岩在围压卸荷作用下的扩容特征研究[J]. , 2013, 34(7): 1881-1886.
[14] 张虎元,贾灵艳,周 浪. 高效废物处置库的混合型缓冲回填材料压缩特性研究[J]. , 2013, 34(6): 1546-1552.
[15] 陈国庆 ,李天斌 ,张 岩 ,付开隆 ,王 栋,. 花岗岩隧道脆性破坏的温度效应研究[J]. , 2013, 34(12): 3513-3519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[2] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[3] 黄润秋,徐德敏. 岩石(体)渗透性测试的体变量法研究[J]. , 2009, 30(10): 2961 -2964 .
[4] 徐远杰,潘家军,刘祖德. 混凝土面板堆石坝的一种坝坡修整算法[J]. , 2009, 30(10): 3139 -3144 .
[5] 张召千,徐明德,刘泉声. 煤巷围岩稳定性加权平均评价方法研究[J]. , 2009, 30(11): 3464 -3468 .
[6] 王 飞,王 媛,倪小东. 渗流场随机性的随机有限元分析[J]. , 2009, 30(11): 3539 -3542 .
[7] 杨 强,刘耀儒,冷旷代,吕庆超,杨春和. 能源储备地下库群稳定性与连锁破坏分析[J]. , 2009, 30(12): 3553 -3561 .
[8] 杨建平,陈卫忠,田洪铭,于洪丹. 应力-温度对低渗透介质渗透率影响研究[J]. , 2009, 30(12): 3587 -3594 .
[9] 董金玉,杨继红,伍法权,王 东,杨国香. 三峡库区软硬互层近水平地层高切坡崩塌研究[J]. , 2010, 31(1): 151 -157 .
[10] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .