岩土力学 ›› 2021, Vol. 42 ›› Issue (8): 2059-2068.doi: 10.16285/j.rsm.2021.0181

• 基础理论与实验研究 • 上一篇    下一篇

透明胶结土材料强度特性的试验研究

冷先伦1, 2,王川1, 2,庞荣3,盛谦1, 2   

  1. 1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071;2. 中国科学院大学,北京 100049; 3. 湖北工业大学 土木建筑与环境学院,湖北 武汉 430068
  • 收稿日期:2021-02-02 修回日期:2021-03-04 出版日期:2021-08-11 发布日期:2021-08-16
  • 作者简介:冷先伦,男,1980年生,博士,副研究员,主要从事岩土工程与稳定方面的研究
  • 基金资助:
    国家重点研发计划项目(No. 2017YFF0108705);国家自然科学基金(No. 52079135)

Experimental study on the strength characteristics of a transparent cemented soil

LENG Xian-lun1, 2, WANG Chuan1, 2, PANG Rong3, SHENG Qian1, 2   

  1. 1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. College of Civil Engineering and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
  • Received:2021-02-02 Revised:2021-03-04 Online:2021-08-11 Published:2021-08-16
  • Supported by:
    This work was supported by the National Key R&D Program of China (2017YFF0108705) and the National Natural Science Foundation of China (52079135).

摘要: 基于透明土的可视化物理模型试验技术在岩土工程力学机制与变形破坏研究中发挥着越来越重要的作用,制备透明度高、物理力学性质稳定、适用于模拟不同岩土体的透明土是该技术发展的基础。针对当前一般黏土和软岩的透明土相似材料较为缺乏的问题,配制了一种适用于模拟一般黏土和软岩的透明胶结土。该透明胶结土以熔融石英砂为土骨架,以纳米级疏水性气相二氧化硅粉为黏结剂,以正十二烷和15#白油的混合矿物油为孔隙液,通过调整黏结剂的含量或占比、土骨架的粒径或级配可获得折射率相近且具有不同强度特征的透明胶结土材料。根据不同黏结剂含量和土骨架级配等影响因素设计了11组对照试验,并通过三轴剪切试验测试了其强度特征及其变化规律。结果表明:(1)透明胶结土的抗剪强度随石英砂的粒径和级配、二氧化硅粉的含量和占比等因素的改变而发生复杂变化,但整体而言提高二氧化硅粉的占比或降低石英砂的级配优良度可使得透明胶结土的抗剪强度降低;(2)通过调整土骨架和黏结剂的配比可制得黏聚力范围为5~65 kPa、内摩擦角为25°~44°的透明胶结土,可为天然黏土和软岩的透明土物理模型试验中相似材料的选取和配制提供依据。

关键词: 透明胶结土, 配制方法, 熔融石英砂, 疏水性气相二氧化硅粉, 三轴剪切试验, 强度特性

Abstract: The visual physical model tesing technology based on transparent soils is playing an increasingly important role in the study of deformation and failure mechanism in geotechnical engineering. The preparation of transparent soil with high transparency, stable physical and mechanical properties, and suitable for simulating different rocks and soils is the basis for the development of this technology. Given the lack of transparent materials for clays and soft rocks, a transparent cemented soil has been formulated. The transparent cemented soil is synthesis using fused quartz as the skeleton particles, nano-level hydrophobic fumed silica powder as the cementation and mixed mineral oil of n-dodecane and #15 white oil as the pore fluid. By changing the content or proportion of the cementation, the size or gradation of the skeleton particles, a series of transparent cemented soils with similar refractive index and varying strength characteristics can be obtained. For the factors influencing the soil strength, such as cementation content and skeleton gradation, 11 groups of controlled experiments were designed and corresponding triaxial shear tests were conducted to study the strength characteristics. Results show that: 1) The shear strength varies complexly with the changes of the particle size and gradation of the fused quartz, the content and proportion of the silica powder, etc., but overall the poor quality of quartz gradation and the rich proportion of silica powder can reduce the shear strength; 2) By changing the preparation formulas, a series of transparent cemented soils with cohesions ranging from 5 kPa to 65 kPa and internal friction angles ranging from 25°to 44°can be prepared, which provides a basis for the selection and preparation of transparent materials in physical model experiments using natural clays and soft rocks.

Key words: transparent cemented soil, preparation method, fused quartz, hydrophobic fumed silica powder, triaxial shear test, strength characteristics

中图分类号: 

  • TU 449
[1] 闫超萍, 龙志林, 周益春, 旷杜敏, 陈佳敏, . 钙质砂剪切特性的围压效应和粒径效应研究[J]. 岩土力学, 2020, 41(2): 581-591.
[2] 涂义亮, 刘新荣, 任青阳, 柴贺军, 王军保, 余佳玉. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928.
[3] 周 辉, 程广坦, 朱 勇, 陈 珺, 卢景景, 崔国建, 杨聘卿, . 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
[4] 任克彬, 王 博, 李新明, 尹 松, . 毛细水干湿循环作用下土遗址的强度特性 与孔隙分布特征[J]. 岩土力学, 2019, 40(3): 962-970.
[5] 刘方成, 吴孟桃, 杨 峻, . 土工格栅加筋橡胶砂强度特性试验研究[J]. 岩土力学, 2019, 40(2): 580-591.
[6] 崔凯, 冯飞, 谌文武, 汪小海, 程富强, . 生石灰为掺料的土遗址裂隙注浆浆液结石体 力学兼容性研究[J]. 岩土力学, 2019, 40(12): 4627-4636.
[7] 吴顺川, 张敏, 张诗淮, 姜日华, . 修正Hoek-Brown准则的等效Mohr-Coulomb 强度参数确定方法研究[J]. 岩土力学, 2019, 40(11): 4165-4177.
[8] 王桂林, 梁再勇, 张 亮, 孙 帆, . Z型裂隙对砂岩强度和破裂行为影响机制研究[J]. 岩土力学, 2018, 39(S2): 389-397.
[9] 韩智铭,乔春生,朱 举. 含两组交叉贯通节理岩体的强度及破坏特征分析[J]. , 2018, 39(7): 2451-2460.
[10] 李凯达,胡少斌,李小春,伍 键,樊清怡,伍海清,. 单相流体对砂岩强度特性的影响[J]. , 2018, 39(5): 1789-1795.
[11] 周 辉,程广坦,朱 勇,卢景景,陈 珺,崔国建,李振国,. 基于三维扫描和三维雕刻技术的岩石结构面原状重构方法及其力学特性[J]. , 2018, 39(2): 417-425.
[12] 吴 起, 卢静生, 李栋梁, 梁德青, . 降压开采过程中含水合物沉积物的力学特性研究[J]. 岩土力学, 2018, 39(12): 4508-4516.
[13] 姜景山,程展林,左永振,丁红顺,. 三维应力状态下粗粒料强度特性试验研究[J]. , 2018, 39(10): 3581-3588.
[14] 张 玉,邵生俊,陈 菲,丁 潇,张少军,. 不同应力路径条件下原状Q3黄土的强度特性及破坏方式试验研究[J]. , 2017, 38(S2): 99-106.
[15] 杨 贵,许建宝,孙 欣,唐晨景, . 颗粒形状对人工模拟堆石料强度和变形特性影响的试验研究[J]. , 2017, 38(11): 3113-3118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .