岩土力学 ›› 2021, Vol. 42 ›› Issue (9): 2355-2374.doi: 10.16285/j.rsm.2021.0295

• 基础理论与实验研究 • 上一篇    下一篇

基于非线性Pasternak地基模型的海床悬链线立管触地段初始侵彻静平衡解析解

张治国1, 2, 3, 4, 5,沈安鑫1,张成平4,PAN Y. T.5,吴钟腾2   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093;2. 自然资源部丘陵山地地质灾害防治重点实验室 福建省地质灾害重点实验室,福建 福州 350002;3. 国家海洋局北海预报中心 山东省海洋生态环境与防灾减灾重点实验室,山东 青岛 266061;4. 北京交通大学 城市地下工程教育部重点实验室,北京 100044;5. 新加坡国立大学 土木与环境工程系,新加坡
  • 收稿日期:2021-03-01 修回日期:2021-04-12 出版日期:2021-09-10 发布日期:2021-08-26
  • 作者简介:张治国,男,1978年生,博士,博士后,副教授,主要从事地下工程,海洋地质工程等方面的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No.41772331,No.41977247);自然资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)开放课题(No.FJKLGH2020K004);山东省海洋生态环境与防灾减灾重点实验室开放课题(No.201703)。

Analytical solution to initial intrusion static equilibrium of steel catenary riser in touchdown zone on seabed based on nonlinear Pasternak foundation model

ZHANG Zhi-guo1, 2, 3, 4, 5, SHEN An-xin1, ZHANG Cheng-ping4, PAN Y. T.5, WU Zhong-ten2   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Fujian Key Laboratory of Geohazard Prevention, Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources, Fuzhou, Fujian 350002, China; 3. Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, North Sea Marine Forecast Center of State Oceanic Administration, Qingdao, Shandong 266061, China; 4. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China; 5. Department of Civil and Environmental Engineering, National University of Singapore, Singapore
  • Received:2021-03-01 Revised:2021-04-12 Online:2021-09-10 Published:2021-08-26
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(41772331, 41977247), the Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources(Fujian Key Laboratory of Geohazard Prevention)(FJKLGH2020K004) and the Opening Fund of Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation(201703).

摘要: 钢质悬链线立管(steel catenary riser,简称SCR)作为深海油气资源开采的首选立管系统,其在与海床土体的相互作用下,对触地段管线埋深以及疲劳寿命影响较大。依据管土相互作用的非线性土体阻力?侵彻深度(p-y)曲线,将其简化为三段线弹性土体刚度衰减模型,求得了基于非线性Pasternak地基模型的海床上悬链线立管触地段初始侵彻静平衡解析解。通过与三维有限元算例和5个模型试验算例的对比分析,发现常规Winkler地基模型会高估管线竖向变形与弯矩,验证了基于非线性Pasternak地基模型解析解的合理性与适用性;海床抗剪强度Su0的增加显著提高了三段线弹性土体刚度,降低了管线竖向变形。此外,针对水深H、立管铺设角度?、管线外径D、管线弹性模量E和材料密度??的变化对管线侵彻土体时的物理力学特性进行了参数对比以及安全评估分析。结果表明:立管铺设角度??增大会使管线竖向变形减小,弯矩与剪力则有所增大,角度超过82o易出现屈服破坏;管线外径D的增加会使土体竖向阻力、管线竖向变形与触地段管线弯矩、剪力同步增大,外径超过0.4 m易出现屈服破坏;管线弹性模量E越大,竖向变形越小,弯矩与剪力则有所增大,弹性模量超过275 GPa易出现屈服破坏;管线材料密度越大,管线竖向变形越大,弯矩没有明显变化,剪力则有所增大,密度超过14 850 kg/m3易出现屈服破坏。上述结论可以为海洋管线悬链线立管的前期设计提供一定理论依据。

关键词: 钢质悬链线立管, 管土作用, p-y曲线, 非线性Pasternak地基模型, 安全评估

Abstract: As the preferred riser system for deep-sea oil and gas resource extraction, steel catenary riser (SCR) has a large impact on the depth of burial and fatigue life of the pipeline in the touchdown zone due to its interaction with the seabed soil body. According to the nonlinear soil resistance-intrusion depth p-y curve of pipe soil interaction, it is simplified as a three segment linear elastic soil stiffness attenuation model, and the analytical solution of initial penetration static equilibrium of catenary riser on seabed is obtained based on the nonlinear Pasternak foundation model. Compared with three-dimensional finite element and five model test cases, it is found that conventional Winkler foundation model overestimates the pipeline vertical deformation and bending moment of soil, which verifies the rationality and applicability of the analytical solution based on nonlinear Pasternak foundation model; the increase of seabed shear strength Su0 significantly improves the stiffness of three-stage linear elastic soil and reduces the pipeline vertical deformation. In addition, according to the changes of water depth H, riser laying angle ?, pipeline outer diameter D, pipeline elastic modulus E and material density ?, the physical and mechanical properties of pipeline penetrating soil are compared and analyzed. The results show that with the increase of vertical pipe laying angle ?, the pipeline vertical deformation will be reduced, while the bending moment and shear force will be increased. When the angle exceeds 82o, it is prone to yield failure. With the increase of pipe outer diameter D, the soil vertical resistance, vertical deformation, bending moment and shear force in touchdown zone will be increased simultaneously. When the outer diameter exceeds 0.4 m, it is easy to yield. The larger the elastic modulus E is, the smaller the pipeline vertical deformation is, the greater the bending moment and shear force are, when the elastic modulus exceeds 275 GPa, it is easy to yield. When the density of pipeline material is higher, the pipeline vertical deformation is larger, the bending moment does not change obviously, but the shear force increases, and when the density exceeds 14 850 kg/m3, it is easy to yield. The above conclusions can provide a theoretical basis for the preliminary design of catenary riser of offshore pipeline.

Key words: steel catenary riser (SCR), interaction of pipes and soil, p-y curve, nonlinear Pasternak model, safety assessment

中图分类号: 

  • TU443
[1] 万建宏, 郑翔之, 欧阳苇航, 刘思威, 黎学优. 基于高性能有限单元的单桩稳定性分析法[J]. 岩土力学, 2020, 41(8): 2805-2813.
[2] 张小玲, 朱冬至, 许成顺, 杜修力, . 强度弱化条件下饱和砂土地基中桩−土 相互作用p-y曲线研究[J]. 岩土力学, 2020, 41(7): 2252-2260.
[3] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[4] 刘成禹,郑智享,. 改进的基于p-y曲线的基坑围护结构计算方法[J]. , 2018, 39(S1): 446-452.
[5] 赵明华,陈耀浩,杨超炜,肖 尧. 基于有限杆单元法的陡坡基桩非线性分析[J]. , 2018, 39(8): 3020-3028.
[6] 李洪江,童立元,刘松玉,包红燕,杨 涛, . 大直径超长灌注桩水平承载性能的参数敏感性[J]. , 2018, 39(5): 1825-1833.
[7] 李 亚,李书兆,张 超. 黏土中自升式钻井船插桩对邻近桩基影响的分析方法[J]. , 2018, 39(5): 1891-1900.
[8] 刘红军,杨 奇,. 局部冲刷对风机支撑系统承载性能的影响[J]. , 2018, 39(2): 722-727.
[9] 荣雪宁,徐日庆,冯苏阳,仇 涛,. 基于拉格朗日乘数法的大弯矩水平受荷桩研究[J]. , 2017, 38(9): 2605-2612.
[10] 周立朵,孔纲强,彭怀风,顾红伟,朱 希,. 倾斜荷载下群桩承载特性理论分析[J]. , 2017, 38(9): 2647-2654.
[11] 李洪江,童立元,刘松玉,顾明芬,陆湛秋,. 软土地基刚柔性桩水平承载位移控制标准研究[J]. , 2017, 38(9): 2676-2682.
[12] 李洪江,刘松玉,童立元, . 基于应力增量的单桩p-y曲线分析方法[J]. , 2017, 38(10): 2916-2922.
[13] 杨晓峰,张陈蓉,黄茂松,袁聚云,. 砂土中桩土侧向相互作用的应变楔模型修正[J]. , 2016, 37(10): 2877-2885.
[14] 杨晓峰 ,张陈蓉 ,袁聚云 , . 砂土中考虑冲刷的水平受荷桩等效应变楔方法[J]. , 2015, 36(10): 2946-2950.
[15] 高博雷 ,张陈蓉 ,张照旭,. 砂土中边坡附近单桩水平抗力的模型试验研究[J]. , 2014, 35(11): 3191-3198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .