岩土力学 ›› 2021, Vol. 42 ›› Issue (12): 3271-3280.doi: 10.16285/j.rsm.2021.0660

• 基础理论与实验研究 • 上一篇    下一篇

基于根系构型的调控提高植物边坡根系固土能力

李珍玉1,欧阳淼1,肖宏彬1,王聚山2,李涛2,刘思思1   

  1. 1. 中南林业科技大学 土木工程学院,湖南 长沙 410004;2. 中国铁路成都局集团有限公司重庆铁路枢纽东环线建设指挥部,重庆 400023
  • 收稿日期:2021-04-29 修回日期:2021-07-28 出版日期:2021-12-13 发布日期:2021-12-14
  • 作者简介:李珍玉,女,1978年生,博士,副教授,主要从事边坡生态防护等方面的研究工作
  • 基金资助:
    国家自然科学基金(No.51608545)

Improvement of slope soil consolidation capacity of plant root system based on regulation of root architecture

LI Zhen-yu1, OUYANG Miao1, XIAO Hong-bin1, WANG Ju-shan2, LI Tao2, LIU Si-si1   

  1. 1. School of Civil Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; 2. East Ring Line Construction Headquarters of Chongqing Railway Hub of China Railway Chengdu Bureau Group Co., Ltd., Chongqing 400023, China
  • Received:2021-04-29 Revised:2021-07-28 Online:2021-12-13 Published:2021-12-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51608545).

摘要: 植物护坡效果与根系在土壤中的空间造型和分布(根系构型)密切相关。采用水肥组合方法调控植物根系构型,通过一系列的室内外试验和理论分析,研究调控后的植物根系构型对边坡土体强度的影响。根据公路边坡工程的实际情况,制作了一路堤试验边坡,选用香根草植物作为生态边坡防护物种,采用9组不同的水肥组合调控植物根系在边坡土体内的生长构型。10个月后,通过十字架分层开挖,统计边坡植物根系发现,香根草根系含量随土层深度先增加后减少,与土层深度之间符合Gauss曲线关系。在施以水肥组合调控区域,香根草根系增生了大量的2级根和3级根,使得土体根系含量和根系表面积密度得到提高,且上坡向的根系占比超过下坡向,达到60%~66%。取不同区域原状土进行剪切试验发现,土体根系含量和根系表面积密度是影响土体抗剪强度的重要因素。通过回归分析发现,土体黏聚力与根系表面积密度之间符合线性关系。基于Wu氏模型,计算了植物根系对土体抗剪强度的增强作用,结果表明:自然生长条件下,单株香根草根系对边坡土体抗剪强度的增量ΔS大致为5.28~8.62 kPa;调控后,边坡土体增生的大部分2级和3级香根草根系与竖直方向的夹角大于坡角,使得单株香根草边坡土体的抗剪强度提高了17.59~33.97 kPa。上述研究结果表明,可利用水肥组合调控植物根系在边坡土体内的生长构型,进一步加固边坡土体,为提高植物边坡土体强度和预防边坡水土流失提供理论和实践依据。

关键词: 边坡工程, 根系构型, 调控, 固土, 抗剪强度

Abstract: The effect of plant slope protection is strongly associated with the root architecture in soil. In this paper, the water-fertilizer combination method was used to regulate the plant root configuration, and the influence of the regulated plant root architecture on the slope soil strength was studied. In terms of the practice of highway slope engineering, a field fill slope for test was made. Vetiver was selected as slope protection species, and 9 groups of water-fertilizer combinations were designed to regulate the root architecture of plant in slope soil. After 10-months growth, the roots of plants on the slope were counted by cross layered excavation. It was found that the root content increased first and then decreased with the depth of soil layer, which accorded with Gauss curve. In control area with water-fertilizer combination, vetiver proliferated a large number of secondary and tertiary roots, which increased root content and root surface area density. The proportion of roots in the upslope direction was higher than that in the downslope direction, reaching 60%?66%. The shear test of undisturbed soil in different regions shows that the root content and root surface area density are important factors affecting the shear strength of soil. Regression analysis shows that there is a linear relationship between soil cohesion and root surface area density. The calculation based on Wu’s model shows that under natural growth conditions, the increment of shear strength of vetiver to slope soil is 5.28 kPa to 8.62 kPa, while under conditions of water-fertilizer combination, the angles between most of secondary and tertiary vetiver roots and the vertical are greater than the slope angle, which makes the shear strength of vetiver on slope soil increase by 17.59 kPa to 33.97 kPa. This research shows that water-fertilizer combination method can be used to regulate the root architecture of plants to strengthen slope soil, which provides theoretical and practical basis for improving slope soil strength and preventing slope soil erosion.

Key words: slope engineering, root architecture, regulation, soil reinforcement, shear strength

中图分类号: 

  • TU413
[1] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[2] 杨洲, 程晓辉, 麻强, 刘伟, 谢庄子, . 高填方地基不排水稳定性分析强度指标研究[J]. 岩土力学, 2022, 43(1): 218-226.
[3] 夏鑫, 姜元俊, 苏立君, MEHTAB Alam, 李佳佳, . 基于界面黏结的含根土抗剪强度极限值估算模型[J]. 岩土力学, 2021, 42(8): 2173-2184.
[4] 王斌, 韩幽铭, 周欣, 陈成, 张先伟, 桂蕾, . 太湖湖相黏土层剪切模量衰减特性的 原位测试研究[J]. 岩土力学, 2021, 42(7): 2031-2040.
[5] 王家辉, 饶锡保, 江洎洧, 姚劲松, 熊诗湖, 卢一为, 李浩民, . 振冲碎石桩复合地基抗剪机制的模型试验研究[J]. 岩土力学, 2021, 42(4): 1095-1103.
[6] 杨爱武, 杨少朋, 郎瑞卿, 陈子荷, . 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593-600.
[7] 詹良通, 孙倩倩, 郭晓刚, 陈锐, 陈云敏, . 花岗岩风化料弃土快速堆填过程中 不排水抗剪强度评估[J]. 岩土力学, 2021, 42(1): 50-58.
[8] 张 泽, 马 巍, ROMAN Lidia, MELNIKOV Andrey, 杨 希, 李宏璧. 基于冻融次数−物理时间比拟理论的冻土 长期强度预测方法[J]. 岩土力学, 2021, 42(1): 86-92.
[9] 黄朝煊, 袁文喜, 胡国杰, . 成层软土地基预固结处理后桩基水平 承载力估算方法[J]. 岩土力学, 2021, 42(1): 113-124.
[10] 桂跃, 吴承坤, 赵振兴, 刘声钧, 刘锐, 张秋敏. 微生物分解有机质作用对泥炭土工程性质的影响[J]. 岩土力学, 2020, 41(S1): 147-155.
[11] 刘杰, 杨玉婳, 姚海林, 卢正, 岳婵, . 基于不同改性方法的分散性黏土处治试验研究[J]. 岩土力学, 2020, 41(S1): 163-170.
[12] 邹先坚, 王益腾, 王川婴. 钻孔图像中岩石结构面三维形貌特征及 优势抗滑方向研究[J]. 岩土力学, 2020, 41(S1): 290-298.
[13] 瑜璐, 杨庆, 杨钢, 张金利. 塑性极限分析鱼雷锚锚尖贯入阻力[J]. 岩土力学, 2020, 41(6): 1953-1962.
[14] 刘建民, 邱月, 郭婷婷, 宋文智, 谷川, . 饱和粉质黏土静剪强度与振动后 静剪强度对比研究[J]. 岩土力学, 2020, 41(3): 773-780.
[15] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谢兴华,王国庆. 深厚覆盖层坝基防渗墙深度研究[J]. , 2009, 30(9): 2708 -2712 .
[2] 宋 晶,王 清,孙 铁,李晓茹,张中琼,焦志亮. 吹填土自重沉淤阶段孔隙水压力消散的试验研究[J]. , 2010, 31(9): 2935 -2940 .
[3] 陈正汉,方祥位,朱元青,秦 冰,魏学温,姚志华. 膨胀土和黄土的细观结构及其演化规律研究[J]. , 2009, 30(1): 1 -11 .
[4] 夏力农,雷 鸣,聂重军. 桩顶荷载对负摩阻力性状影响的现场试验[J]. , 2009, 30(3): 664 -668 .
[5] 潘鹏志,冯夏庭,周 辉. 脆性岩石破裂演化过程的三维细胞自动机模拟[J]. , 2009, 30(5): 1471 -1476 .
[6] 叶为民,黄 伟,陈 宝,郁 陈,王 驹. 双电层理论与高庙子膨润土的体变特征[J]. , 2009, 30(7): 1899 -1903 .
[7] 王吉亮,陈剑平,杨 静,阙金声. 岩爆等级判定的距离判别分析方法及应用[J]. , 2009, 30(7): 2203 -2208 .
[8] 陈 明,卢文波,周创兵,罗 忆. 初始地应力对隧洞开挖爆生裂隙区的影响研究[J]. , 2009, 30(8): 2254 -2258 .
[9] 张 红 ,郑颖人 ,杨 臻 ,王谦源 ,葛苏鸣. 黄土隧洞支护结构设计方法探讨[J]. , 2009, 30(S2): 473 -478 .
[10] 陈建功 ,周陶陶 ,张永兴. 深部洞室围岩分区破裂化的冲击破坏机制研究[J]. , 2011, 32(9): 2629 -2634 .