岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 489-498.doi: 10.16285/j.rsm.2021.0132

• 基础理论与实验研究 • 上一篇    下一篇

冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响

李敏1,于禾苗1,杜红普2,曹保宇1,柴寿喜3   

  1. 1. 河北工业大学 土木与交通学院,天津 300401;2. 中国广电河南网络有限公司,河南 郑州450046; 3. 天津城建大学 地质与测绘学院,天津 300384
  • 收稿日期:2021-08-10 修回日期:2021-12-06 出版日期:2022-02-11 发布日期:2022-02-22
  • 作者简介:李敏,女,1985年生,博士,教授,主要从事污染土的处置研究。
  • 基金资助:
    国家自然科学基金(No. 51978235);河北省自然科学基金(No. E2018202274);河北省科技创新战略基金(No. 20180602)。

Mechanical properties of saline soil solidified with the mixture of lime, fly ash and modified polyvinyl alcohol under freeze-thaw cycles

LI Min1, YU He-miao1, DU Hong-pu2, CAO Bao-yu1, CHAI Shou-xi3   

  1. 1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; 2. Radio and Television Henan Network Co., Ltd., Zhengzhou, Henan 450046, China; 3. School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China
  • Received:2021-08-10 Revised:2021-12-06 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51978235), the Natural Science Foundation of Hebei Province (E2018202274) and the Technology Innovation Strategy Foundation of Hebei Province (20180602).

摘要: 随季节性变化的冻融循环作用对土体结构有显著的影响。为降低盐渍土对环境温度的敏感性并将其应用于工程中,提出以石灰、粉煤灰和改性聚乙烯醇(MPA)为固化材料的联合固化方法。先通过无侧限抗压强度(UCS)和微观扫描试验评价固化效果,构建固化材料的参数范围,再将抗剪强度(黏聚力和内摩擦角)与正交试验相结合,分析各因素的影响,明确最佳组合参数。结果表明:石灰+粉煤灰+MPA联合固化有助于提高盐渍土的强度,联合固化盐渍土的UCS为1 130.25 kPa,是盐渍土(218 kPa)的5.18倍;联合固化盐渍土的冻融强度满足工程规范(JTG 3430-2020)要求。冻融循环作用下联合固化盐渍土的UCS稳定值为700 kPa,且3次循环后的波动范围在5%左右。适宜配比下联合固化盐渍土的抗剪强度(黏聚力和内摩擦角)在3次冻融循环后为208.2 kPa和38.56°。各因素的敏感性由高到低依次为养护时间、石灰掺量、MPA掺量、干密度、含盐量和冻融循环次数,随石灰、粉煤灰和MPA掺量的增加,联合固化盐渍土强度增大并趋于稳定,固化参数的优化可有效弱化冻融作用对滨海盐渍土的影响。结合抗压及抗剪强度试验结果,建议固化参数的最佳组合为石灰掺量14%、粉煤灰掺量30%、MPA掺量1%、养护时间28 d、干密度1.65 g/cm3。

关键词: 力学性能, 冻融性能, 联合固化, 抗压强度, 抗剪强度, 微观结构, 盐渍土

Abstract: The repeated freeze-thaw cycles with seasonal alternations have an obvious effect on soil structure. To reduce the sensitivity of saline soil to temperature and then use it in engineering, a combined treatment method is proposed, where lime, fly ash and modified polyvinyl alcohol (MPA) are used as solidified materials. Unconfined compressive strength (UCS) and microstructure characterization tests are firstly used to evaluate the solidified effect and obtain the parameters scope of solidified materials. Then the tests of shear strength (cohesion and internal friction angle) and the orthogonal experiment are used to analyze the influence of each factor, and then obtained the optimal combination of solidified parameters. The results indicate that the combination of lime, fly ash and MPA can improve the strength of saline soil. After combined treatment, the UCS is 1 130.25 kPa, which is 5.18 times than that of saline soil (218 kPa). The strength of combined solidified saline soil meets the requirements of engineering specification (JTG 3430-2020). The stable value of UCS of combined solidified saline soil under freeze-thaw cycles is 700 kPa. The fluctuation is about 5% after three freeze-thaw cycles. The cohesion and the internal friction angle of combined solidified saline under the most appropriate ratio can be 208.2 kPa and 38.56°, respectively after three freezing-thawing cycles. The sensitivity ranking of the factors is as follows: curing time, lime content, MPA content, dry density, salt content, and times of freeze-thaw cycles. With an increase in lime, fly ash and MPA content, the strength of combined solidified saline soil increases and then tends to become stable. The optimization of solidification parameters can effectively weaken the influence of freeze-thaw on coastal saline soil. Based on tests results of compressive strength and shear strength, it can be concluded that the optimal combination of solidified parameters is 14% of lime, 30% of fly ash, 1% of MPA, 28 days of curing time, and a dry density of 1.65 g/cm3.

Key words: mechanical property, freeze-thaw performance, combined solidified method, compressive strength, shear strength, microstructure, saline soil

中图分类号: 

  • TU 448
[1] 张强, 王军保, 宋战平, 冯世进, 张玉伟, 曾涛, . 循环荷载作用下盐岩微观结构变化及经验疲劳模型[J]. 岩土力学, 2022, 43(4): 995-1008.
[2] 蔡光华, 周伊帆, 潘智生, 李江山, . 生石灰激发GGBS固化高含水率香港海相 沉积物的物理力学性质研究[J]. 岩土力学, 2022, 43(2): 327-336.
[3] 周实际, 杜延军, 倪浩, 孙慧洋, 李江山, 杨玉玲, . 压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
[4] 杨洲, 程晓辉, 麻强, 刘伟, 谢庄子, . 高填方地基不排水稳定性分析强度指标研究[J]. 岩土力学, 2022, 43(1): 218-226.
[5] 周恒宇, 王修山, 胡星星, 熊志奇, 张小元, . 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098.
[6] 夏鑫, 姜元俊, 苏立君, MEHTAB Alam, 李佳佳, . 基于界面黏结的含根土抗剪强度极限值估算模型[J]. 岩土力学, 2021, 42(8): 2173-2184.
[7] 王斌, 韩幽铭, 周欣, 陈成, 张先伟, 桂蕾, . 太湖湖相黏土层剪切模量衰减特性的 原位测试研究[J]. 岩土力学, 2021, 42(7): 2031-2040.
[8] 平琦, 苏海鹏, 马冬冬, 张号, 张传亮, . 不同高温作用后石灰岩物理与动力特性试验研究[J]. 岩土力学, 2021, 42(4): 932-942.
[9] 余莉, 彭海旺, 李国伟, 张钰, 韩子豪, 祝瀚政. 花岗岩高温−水冷循环作用下的试验研究[J]. 岩土力学, 2021, 42(4): 1025-1035.
[10] 王家辉, 饶锡保, 江洎洧, 姚劲松, 熊诗湖, 卢一为, 李浩民, . 振冲碎石桩复合地基抗剪机制的模型试验研究[J]. 岩土力学, 2021, 42(4): 1095-1103.
[11] 杨爱武, 杨少朋, 郎瑞卿, 陈子荷, . 轻质固化盐渍土三维力学特性研究[J]. 岩土力学, 2021, 42(3): 593-600.
[12] 陈猛, 崔秀文, 颜鑫, 王浩, 王二磊. 岩石−钢纤维混凝土复合层抗压强度预测模型[J]. 岩土力学, 2021, 42(3): 638-646.
[13] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
[14] 刘倩倩, 李舰, 蔡国庆, 李朋林, 李昕哲, . 全吸力范围的盐渍土持水特性的试验研究[J]. 岩土力学, 2021, 42(3): 713-722.
[15] 熊仲明, 吕世鸿, 李运良, 赵奇峰, 李进, 谭书舜, 张向荣, 朱玉荣, 姜磊, 杨琪凡, 张宁波, 张子栋. 被动围压下黄土动态力学性能与能量耗散研究[J]. 岩土力学, 2021, 42(3): 775-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .