岩土力学 ›› 2022, Vol. 43 ›› Issue (2): 432-442.doi: 10.16285/j.rsm.2021.1474

• 基础理论与实验研究 • 上一篇    下一篇

压实度对铁盐稳定化砷、锑污染土特性 的影响及机制研究

周实际1, 2, 3,杜延军1, 2,倪浩1, 2,孙慧洋1, 2,李江山3,杨玉玲1, 2, 3   

  1. 1. 东南大学 岩土工程研究所,江苏 南京 210096;2. 东南大学 江苏省城市地下工程与环境安全重点实验室,江苏 南京 210096; 3. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2021-09-01 修回日期:2021-11-24 出版日期:2022-02-11 发布日期:2022-02-22
  • 通讯作者: 杜延军,男,1972年生,博士,教授,博导,主要从事环境岩土工程、污染地块风险管控与修复技术方面的研究。E-mail: duyanjun@seu.edu.cn E-mail:shijizhou@seu.edu.cn
  • 作者简介:周实际,男,1989年生,博士研究生,主要从事重金属污染土固化稳定化技术方面的研究
  • 基金资助:
    国家重点研发计划项目(No. 2019YFC1806000);国家自然科学基金(No. 41877248);岩土力学与工程国家重点实验室开放基金课题 (No. Z019016);江苏省研究生科研创新计划项目(No. KYCX18_0124)。

Mechanisms analysis of the effect of compaction degree on the properties of arsenic and antimony co-contaminated soil stabilized by ferric salts

ZHOU Shi-ji1, 2, 3, DU Yan-jun1, 2, NI Hao1, 2, SUN Hui-yang1, 2, LI Jiang-shan3, YANG Yu-ling1, 2, 3   

  1. 1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; 2. Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, Jiangsu 210096, China; 3. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2021-09-01 Revised:2021-11-24 Online:2022-02-11 Published:2022-02-22
  • Supported by:
    This work was supported by the National Key R&D Program of China (2019YFC1806000), the National Natural Science Foundation of China (41877248), the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering (Z019016) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0124).

摘要: 压实度是影响铁盐稳定化砷(As)、锑(Sb)污染土环境岩土工程特性的主要因素之一。通过测定不同压实度铁盐稳定剂(PFSC)稳定化As、Sb污染土无侧限抗压强度(UCS)、As和Sb浸出浓度、渗透系数 ,研究了压实度对PFSC稳定化As、Sb污染土环境岩土工程特性的影响规律。通过工业CT扫描、X射线光电子能谱(XPS)明确了稳定化土微观孔隙特征、元素价态随压实度的变化规律。As的浸出浓度随着压实度的提高先降低后略微上升,压实度为93%时,As的浸出浓度最低;Sb的浸出浓度随着压实度的提高而降低,压实度大于85%后趋于平稳。压实度由75%提高至96%,稳定化土UCS由4.26 kPa增大至43.78 kPa。压实度由80%提高至96%,稳定化土 由1.33×10–7 m/s 降低至2.81×10–9 m/s。工业CT扫描结果表明,随着压实度的提高,土体逐渐紧实,土体孔隙度由7.54%降低至5.30%。As、Sb和Fe的XPS分析结果表明,压实度增高促使As(V)、Sb(V)和Fe(III)分别向As(III)、Sb(III)和Fe(II)转化。揭示PFSC稳定化As、Sb污染土环境岩土工程特性参数随压实度的变化规律,能够为PFSC稳定化As、Sb污染土的工程应用和施工参数优化提供理论依据。

关键词: 压实度, 砷、锑污染土, 稳定化, 无侧限抗压强度, 浸出浓度, 渗透系数

Abstract: The compaction degree is one of the main factors affecting the geo-environmental properties of arsenic (As) and antimony (Sb) co-contaminated soil stabilized by ferric salts. The effect of compaction degree on the geo-environmental properties of As and Sb co-contaminated soil stabilized by a ferric salt-based stabilizer (PFSC, polymerized ferrous sulfate-Ca(OH)2) was investigated, including unconfined compressive strength (UCS), leached concentrations of As and Sb, and hydraulic conductivity . The varied characteristics of the micro pores and the element valence in the stabilized soil with compaction degree were clarified by adopting industrial CT scanning and X-ray photoelectron spectroscopy (XPS) in the study. The leached concentration of As decreased first and then increased with the increase of compaction degree, and reached the lowest as the compaction degree was 93%. The leached concentration of Sb decreased with the increase of compaction degree, while remained constant until the compaction degree was larger than 85%. When the compaction degree increased from 75% to 96%, the UCS of the stabilized soil increased from 4.26 kPa to 43.78 kPa. As the compaction degree increased from 80% to 96%, the of the stabilized soil decreased from 1.33×10–7 m/s to 2.81×10–9 m/s. In addition, it can be observed from the industrial CT results that the porosity of stabilized soil decreased from 7.54% to 5.30% with the increase of compaction degree, hence leading to the more compactness structures of the soil. The XPS analysis of the As, Sb and Fe indicated that increasing the compaction degree of stabilized soil promoted the transformation of As(V), Sb(V), and Fe(III) to As(III), Sb(III), and Fe(II), respectively. The study mainly focused on revealing the effects of compaction degree on the geo-environmental properties of As and Sb co-contaminated soil stabilized by PFSC, which will provide a theoretical basis for the engineering application and the optimization for the operation parameters of PFSC-stabilized As and Sb co-contaminated soil.

Key words: compaction degree, arsenic and antimony co-contaminated soil, stabilization, unconfined compressive strength, leached concentration, hydraulic conductivity

中图分类号: 

  • X 53
[1] 王海曼, 倪万魁. 不同干密度压实黄土的饱和/非饱和渗透 系数预测模型[J]. 岩土力学, 2022, 43(3): 729-736.
[2] 李驰, 田蕾, 董彩环, 张永锋, 王燕星, . MICP技术联合多孔硅吸附材料对锌铅 复合污染土固化/稳定化修复的试验研究[J]. 岩土力学, 2022, 43(2): 307-316.
[3] 詹良通, 丁兆华, 谢世平, 李育超, 何顺辉, . 竖向阻隔墙中土工复合膨润土防水毯搭接 区渗透系数测试与分析[J]. 岩土力学, 2021, 42(9): 2387-2394.
[4] 刘丽, 吴羊, 李旭, 赵煜鑫, . 压实度对宽级配土水力特性的影响研究[J]. 岩土力学, 2021, 42(9): 2545-2555.
[5] 傅鹤林, 安鹏涛, 李凯, 成国文, 李鲒, 余小辉, . 围岩非均质性对隧道突涌水的影响分析[J]. 岩土力学, 2021, 42(6): 1519-1528.
[6] 王英, 张虎元, 童艳梅, 周光平, . 接缝密封材料对缓冲砌块屏障封闭性能的影响[J]. 岩土力学, 2021, 42(6): 1648-1658.
[7] 鞠远江, 胡明鉴, 秦坤坤, 宋博, 孙子晨, . 珊瑚礁岛钙质砂细颗粒渗透运移规律研究[J]. 岩土力学, 2021, 42(5): 1245-1253.
[8] 任华平, 刘希重, 宣明敏, 叶新宇, 李强, 张升, . 循环荷载作用下击实粉土累积塑性变形研究[J]. 岩土力学, 2021, 42(4): 1045-1055.
[9] 张乐, 党发宁, 高俊, 丁九龙. 线性加载条件下考虑应力历史的饱和黏土一维非线性固结渗透试验研究[J]. 岩土力学, 2021, 42(4): 1078-1087.
[10] 吴俊, 征西遥, 杨爱武, 李延波. 矿渣−粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
[11] 刘倩倩, 李舰, 蔡国庆, 李朋林, 李昕哲, . 全吸力范围的盐渍土持水特性的试验研究[J]. 岩土力学, 2021, 42(3): 713-722.
[12] 江文豪, 詹良通. 考虑井阻效应及径向渗透系数变化下砂井 地基的大变形固结[J]. 岩土力学, 2021, 42(3): 755-766.
[13] 李瑛, 陈东, 刘兴旺, 谢锡荣, 童星, 张金红. 悬挂式止水帷幕深基坑减压降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832.
[14] 李甜果, 孔令伟, 王俊涛, 王凤华, . 基于核磁共振的季冻区膨胀土三峰孔隙结构演化特征及其力学效应[J]. 岩土力学, 2021, 42(10): 2741-2754.
[15] 杨志浩, 岳祖润, 冯怀平, 叶朝良, 周江涛, 介少龙, . 重载铁路基床表层级配碎石渗透特性试验研究[J]. 岩土力学, 2021, 42(1): 193-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .